References:
[1] http://www.planete-tp.com/en/the-invention-of-reinforced-concrete-and-then-a180.html.
[2] https://civiltoday.com/civil-engineering-materials/concrete/23-advantages-and-disadvantages-of-reinforced-concrete
[3] D. Gardner, R. Lark, T. Jefferson, R. Davies, “A survey on problems encountered in current concrete construction and the potential benefits of self-healing cementitious materials”, Case Studies in Construction Materials, Vol. 8, pp: 238–247, 2018.
[4] L. Bertolini, “Steel Corrosion and Service Life of Reinforced Concrete Structures.” Structure and Infrastructure Engineering, Vol. 4(2), pp. 123–137, 2008
[5] M. Yunovich, N. G. Yunovich, T. Balvanyos, L. Lave, “Corrosion Cost and Preventive Strategies in the United States - Appendix D: Highway Bridges.” Federal Highway Administration, FHWA-RD-01-157, 2001.
[6] N. L. Thomas,” Corrosion problems in reinforced concrete: why accelerators of cement hydration usually promote corrosion of steel” Journal of Materials Science, Vol. 22(9), pp 3328–3334, 1987.
[7] J. Blunt, G. Jen, C.P. Ostertag, “Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete”, Corrosion Science, Vol. 92, pp:182–191, 2015.
[8] C. Fang, K. Lundgren, L. Chen, Ch. Zhu, “Corrosion influence on bond in reinforced concrete”, Cement and Concrete Research, Vol. 34, pp: 2159–2167, 2004.
[9] V. Marcos-Meson, A. Michel, A. Solgaard, G. Fischer, C. Edvardsen, T. L. Skovhus, “Corrosion resistance of steel fibre reinforced concrete - A literature review”, Cement and Concrete Research, Vol. 103, pp:1-20, 2018.
[10] S. Ahmad, A. Elahi, S.A. Barbhuiya, Y. Farid. “Use of polymer modified mortar in controlling cracks in reinforced concrete beams”, Construction and Building Materials, Vol. 27, pp: 91–96, 2012.
[11] S. Taghavipour, S. Kharkovsky, W-H. Kang, B. Samali, O. Mirza, “Detection and monitoring of flexural cracks in reinforced concrete beams using mounted smart aggregate transducers”, Smart Materials and Structures, Vol. 26, (7pp), 2017.
[12] X. Zhao, Y. Wu, A. Y. Leung, H. F. Lam, “Plastic Hinge Length in Reinforced Concrete Flexural Members”, Procedia Engineering, Vol. 14, pp:1266 -1274, 2011.
[13] A. Ismail, “Nonlinear static analysis of a retrofitted reinforced concrete building”, Housing and Building National Research Center, Vol. 10, pp: 100-107, 2014.
[14] O. Ozcan, B. Binici, G. Ozcebe, “Improving Seismic Performance of Deficient Reinforced Concrete Columns Using Carbon Fiber-Reinforced Polymers”, Engineering Structures, Vol. 30, pp: 1632-1646, 2008.
[15] M. Zeinoddinia, A. Dabiria, “Seismic Analytical Model for Retrofitted Old Reinforced Concrete Structures”, Procedia Engineering, Vol. 54, pp: 188 -206, 2013.
[16] L. Di Sarno, G. Manfredi, “Seismic strengthening with buckling restrained braces: application to an existing non-ductile RC framed building”, Soil Dynam. Earthq. Eng, 30 (11), pp:1279–1297, 2010.
[17] I. A. Rubaratuka, “Challenges of the Quality of Reinforced Concrete Buildings In Dar es Salaam”, International Journal of Engineering Research & Technology, Vol. 2 (12), pp: 820-827, 2013.
[18] H. Bian, K. Hannawi, M. Takarli, L. Molez, W. Prince, “Effects of thermal damage on physical properties and cracking behavior of ultrahigh-performance”, Journal of Materials Science, Vol. 51, pp:10066–10076, 2016.
[19] E. Rudnik, T. Drzymała, “Thermal behavior of polypropylene fiber-reinforced concrete at elevated temperatures”, Journal of Thermal Analysis and Calorimetry, Vol. 131, pp:1005–1015, 2018.
[20] M. Ozawa, H. Morimoto, “Effects of various fibres on high-temperature spalling in high-performance concrete”. Constr Build Mater. Vol. 71, pp:83-92, 2014.
[21] A.C. Barrera. J. L. Bonet, M. L. Romero, P.F. Miguel, “Experimental tests of slender reinforced concrete columns under combined axial load and lateral force”, Engineering Structures, Vol. 33 (12), pp: 3676-3689, 2011.