References:
[1] Deepak RanjanNayak, AmitavMahapatra, Pranati Mishra “A Survey on
Rainfall Prediction using Artificial Neural Network” International
Journal of Computer Applications (0975 – 8887) Volume 72– No.16,
June 2013.
[2] SorooshSorooshian, Kuo-lin Hsu, Bisher Imam, and Yang Hong,
“Global Precipitation Estimation from Satellite Image Using Artificial
Neural Networks” Hydrological Modeling in Arid and Semi-Arid Areas,
Edited by H.Wheater, S.Sorooshian and K.D.Sharma, Cambridge
University Press, pp.21-28. 2008.
[3] S. Sorooshian, K. L.Hsu, X. Gao, H.V. Gupta, B. Imam, andD.
Braithwaite, “Evaluation of PERSIANN system satellite based estimates
of tropical rainfall,” Bull. Amer. Meteorol. Soc., vol. 81, p. 2035, 2000.
[4] Arkin and P. Xie “The global precipitation climatology project: First
algorithm intercomparison project” Bull. Amer. Meteor. Soc.,75, 401–
419, 1994.
[5] Ebert, E. E., and M. J. Manton, “Performance of satellite rainfall
estimation algorithms during TOGACOARE”. J. Atmos. Sci., 55, 1537–
1557.1998.
[6] Alder, G. J. Huffman, and P. R. Keehn, “Global rain estimates from
microwave adjusted geosynchronous IR data”. Remote Sens. Rev., 11,
125–152.1994.
[7] Arkin, P. A., “The relationship between fractional coverage of high
cloud and rainfall accumulations during GATE over the B-scale array”.
Mon. Wea. Rev., 107, 1382–1387. 1979.
[8] Hsu, K. L., X. Gao, S. Sorooshian, and H. V. Gupta, “Precipitation
estimation from remotely sensed information using artificial neural
networks”. J. Appl. Meteor., 36, 1176–1190. 1997.
[9] Hsu, H. V. Gupta, X. Gao, and S. Sorooshian, “Estimation of physical
variables from multichannel remotely sensed imagery using neural
networks: Application to rainfall estimation”. Water Resour. Res., 35
(5), 1605–1618. 1999.
[10] Y. Hong, K. L. Hsu, S. Sorooshian, and X. G. Gao, “Precipitation
estimation from remotely sensed imagery using an artificial neural
network cloud classification system,” J. Appl. Meteorol., vol. 43, pp.
1834–1852, 2004.
[11] Kohonen, T., “Self-organized formation of topologically correct feature
maps”. Biol. Cybernetics, 43, 59–69. 1982.
[12] Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, “Precipitation
estimation from remotely sensed information using artificial neural
networks”. J. Appl. Meteor., 36, 1176–1190. 1997.
[13] Atlas, D., D. Rosenfeld, and D. B. Wolff, “Climatologically tuned
reflectivity–rain rate relations and links to area–time integrals”. J. Appl.
Meteor., 29, 1120–1135. 1990.
[14] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A
method that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal resolution,”
J.Hydrometeorol., vol. 5, pp. 487–503, 2004.
[15] F. J. Turk and S. D. Miller, “Toward improved characterization of
remotely sensed precipitation regimes with MODIS/AMSR-E blended
data techniques,” IEEE Trans. Geosci. Remote Sens., vol. 43, pp. 1059
1069, 2005.
[16] T. Wilheit, C. D. Kummerow, and R. Ferraro, “Rainfall algorithms for
AMSR-E,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 204–
214, Feb. 2003.
[17] C. D. Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J. Mc-
Collum, R. Ferraro, G. Petty, D. B. Shin, and T. T. Wilheit, “The
evolution of the Goddard profiling algorithm (GPROF) for rainfall
estimation from passive microwave sensors,” J. Appl. Meteorol., vol. 40,
pp. 1801–1817, 2001.
[18] R. R. Ferraro, “Special sensor microwave imager derived global rainfall
estimates for climatological applications”, J. Geophys. Res., vol. 102,
no. D14, pp. 16 715–16 735, 1997.
[19] F. Weng, L. Zhao, R. R. Ferraro, G. Poe, X. Li, and N. C. Grody,
“Advanced microwave sounding unit cloud and precipitation
algorithms,” Radio Sci., vol. 38, no. 4, pp. 8068–8081, 2003.
[20] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A
method that produces global precipitation estimates from passive
microwave and infrared data at 8-km, 1=2-hourly resolution,” J.
Hydrometeorol., vol. 5, pp. 487–503, 2004.
[21] G. J. Huffman, R. F. Adler, D. T. Bolvin, G. J. Gu, E. J. Nelkin, K. P.
Bowman, Y. Hong, E. F. Stocker, and D. B. Wolff, “The TRMM
multisatellite precipitation analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales,” J.
Hydrometeorol., vol. 8, pp. 38–55, 2007.
[22] Miller, J. R., “A climatological Z–R relationship for convective storms
in the northern Great Plains”. Preprints, 15th Conf. on Radar
Meteorology, Champaign–Urbana, IL, Amer. Meteor. Soc., 153–154.
1972.
[23] Krajewski, W. F., and J. A. Smith,“On the estimation of climatological
Z–R relationships”. J. Appl. Meteor., 30, 1436– 1445. 1991.
[24] Huffman and Coauthors,“The Global Precipitation Climatology Project
(GPCP) combined precipitation dataset”. Bull. Amer. Meteor. Soc., 78,
5–20. 1997.
[25] Huffman, R. F. Adler, M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce,
B. McGavock, and J. Susskind, “Global precipitation at one-degree daily
resolution from multisatellite observations”. J. Hydrometeor., 2, 36–50.
2001.
[26] SmadarShiffman “Cloud Detection from Satellite Imagery: a
Comparison of Expert-Generated and Automatically-Generated Decision
Trees” In Proceedings of the Eighth Workshop on Mining Scientific and
Engineering Datasets, held in conjunction with the 2005 SIAM
International Conference on Data Mining, April 21-23, Newport Beach,
CA, 2005
[27] F. Murtagh, D. Barreto and J. Marcello, Decision boundaries using
Bayes factors: the case of cloud masks. IEEE Transactions on
Geoscience and Remote Sensing, 14, 2952-2958, 2003.
[28] Lee, Y., Wahba, G., Ackerman, S. A., Cloud classification of satellite
radiance data by multicategory support vector machines, Journal of
Atmospheric and Oceanic Technology Vol. 21 No. 2 pp. 159-169, 2004.
[29] Hansen, M., Dubayah, R., &DeFries, R, “Classification trees: an
alternative to traditional land cover classifiers” International Journal of
Remote Sensing, 17, 1075– 108, 1996.
[30] Promcharoen, S., Rangsanseri, Y., SuwitOngsomwang, S., Jaruppat, J.,
“Supervised Classification of Multispectral Satellite Images using Fuzzy
Logic and Neural Network”, Proceeding of the 20th Asian Conference
on Remote Sensing, November 22-25, 1999, Hong Kong, China.
[31] A.B. Davis, S.P. Brumby, N.R. Harvey, K. Lewis Hirsch, and C.A.
Rohde, “Genetic refinement of cloud-masking algorithms for the multispectral
thermal imager (MTI)" in Proc. IGARSS 2001, Sydney,
Australia, 9-13 July 2001.
[32] Zhan, X., Sohlberg, R.A, Townshend, J.R.G, DiMiceli, C., Carroll M.L.,
Eastman, J.C., Hansen, M.C. , DeFries, R.S. “Detection of land cover
changes using MODIS 250 m data” Remote Sensing of Environment
(2002), pp. 336–350.
[33] Stowe, L. L., P. A. Davis, and E. P. McClain, “Scientific Basis and
Initial Evaluation of the CLAVR-1 Global Clear/Cloud Classification
Algorithm for the Advanced Very High Resolution Radiometer” J.
Atmos. & Oceanic Tech., 16, 6, 656- 681, 1999.
[34] Thomas, S., A. K. Heidinger, “Comparison of NOAA's Operational
AVHRR Derived Cloud Amount to other Satellite Derived Cloud
Climatologies”in press to the Journal of Climate, 2004.
[35] J. C. Berg`es, I. Jobard, F. Chopin, and R. Roca “EPSAT-SG: a satellite
method for precipitation estimation; its concepts and implementation for
the AMMA experiment” Ann. Geophys., 28, 289–308, 2010
[36] Arkin, P. A.: The relationship between the fractional coverage of high
cloud and rainfall accumulations during GATE over the Barray, Mon.
Weather Rev., 107, 1382–1387, 1979.
[37] Von Storch, H., Langenberg, H., and Feser, F.: A spectral nudging
technique for dynamical downscaling purposes, Mon. Weather Rev.,
128, 3664–3673, 2000.
[38] Vicente, G., Scofield, R. A., and Menzel, W. P.: The operational GOES
infrared rainfall estimation technique, B. Am. Meteorol. Soc., 79, 1883–
1898, 1998.
[39] M. Mahrooghy, V. G. Anantharaj, N. H. Younan, W. A. Petersen, F. J.
Turk, and J. Aanstoos, “Infrared satellite precipitation estimate
usingwaveletbased cloud classification and radar calibration,” in Proc.
2010 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS),
2010, pp.2345–2348.
[40] C. Kummerow, Y. Hong, W. S. Olson, S. Yang, R. F. Adler, J.
McCollum, R. Ferraro, G. Petty, D. B. Shin, and T. T. Wilheit, “The
evolution of the Goddard profiling algorithm (GPROF) for rainfall
estimation from passive microwave sensors”, J. Appl. Meteor., 40, 1801-
1820, 2001
[41] Y. Lin, and K. E. Mitchell “The NCEP Stage II/IV hourly precipitation
analyses: development and applications. Preprints”, 19th Conf. on
Hydrology, American Meteorological Society, San Diego, CA, 9-13
January 2005, Paper 1.2., 2005
[42] Y. Hong, K. L. Hsu, S. Sorooshian, and X. G. Gao, “Precipitation
Estimation from Remotely Sensed Imagery using an Artificial Neural
Network Cloud Classification System,” Journal of Applied Meteorology,
43, 1834-1852, 2004
[43] M. Mahrooghy, V. G. Anantharaj, N. H. Younan, W. A. Petersen, and F.
J. Turk, “An Adaptive Methodology To Enhance Infrared Satellite
Precipitation”, 34th Conf. on Radar Meteorology, AMS, Williamsburg,
VA, Paper 14.26., 4-9 October, 2009.
[44] T. Chronis, E. Anagnostou, and T. Dinku, “High frequency estimation of
thunderstorms via Satellite Infrared and a long-range lightning network
in Europe”, Quarterly Royal Meteorological Society Vol.130 No. 599,
2004.
[45] T. Kohonen, “Self-organized formation of topologically correct feature
maps”. Biol. Cybernetics ,43, 59–69, 1982