Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye
References:
[1] V. Katheresan, J. Kansedo, S.Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review”, J. Environ. Chem. Eng., vol. 6, pp. 4676–4697, 2018.
[2] W. Yang, J. Wang, Q. Yang, H. Pei, N. Hu, Y. Suo, Z. Li, D. Zhang, J. Wang, “Facile fabrication of robust MOF membranes on cloth via a CMC macromolecule bridge for highly efficient Pb(II) removal, Chem. Eng. J., vol. 339, pp. 230–239, 2018.
[3] P. Kumar, A. Pournara, K.H. Kim, V. Bansal, S. Rapti, M.J. Manos, “Metal-organic frameworks: challenges and opportunities for ion-exchange/sorption applications”, Prog. Mater. Sci., vol. 86, 25–74, 2017.
[4] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, “Dye and its removal from aqueous solution by adsorption: A review”, Adv. Colloid Interface Sci., vol. 209, pp. 172–184, 2014.
[5] S. Shakoor, A. Nasar, “Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent”, J. Taiwan Inst. Chem. Eng., vol. 66, 154–163, 2016.
[6] M.K. Uddin, “A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade”, Chem. Eng. J., vol. 308, pp. 438–462, 2017.
[7] H. Ferfera-Harrar, N. Aiouaz, N. Dairi, “Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification”, World Academy of Science, Engineering and Technology Inter. J. Chem., Molecular Nuclear Mater. Metallurgical Eng., vol.9, pp.757–764, 2015.
[8] N.S. V Capanema, A.A.P. Mansur, H.S. Mansur, A.C. de Jesus, S.M. Carvalho, P. Chagas, L.C. de Oliveira, “Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications”, Environ. Technol., vol. 39, pp. 2856–2872, 2018.
[9] H. Ferfera-Harrar, D. Berdous, T. Benhalima, “Hydrogel nanocomposites based on chitosan-g-polyacrylamide and silver nanoparticles synthesized using Curcuma longa for antibacterial applications”, Polym. Bull., vol. 75, pp. 2819–2846, 2018.
[10] H. Ferfera-Harrar, N. Aouaz, N. Dairi, “Environmental-sensitive chitosan-g-polyacrylamide/carboxymethylcellulose superabsorbent composites for wastewater purification I: synthesis and properties”, Polym. Bull., vol. 73, pp. 815–840, 2016.
[11] T. Benhalima, S. Mounsi, N. Dairi, H. Ferfera-Harrar, “Chitosan-g-poly(acrylamide)/Diatomite superabsorbent composites: synthesis and investigation of swelling properties”, Journal of Materials, Processes and Environment, vol. 4, pp. 21-25, 2016.
[12] H. Ferfera-Harrar, N. Aiouaz, N. Dairi, A.S. Hadj-Hamou, “Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: Studies on swelling, thermal, and antibacterial properties”, J. Appl. Polym. Sci., vol. 131, pp.39747.
[13] T. Benhalima, D. Lerari, H. Ferfera-Harrar, “Preparation of carboxymethylcellulose-based hydrogel beads and their used as bioadsorbent of dye from aqueous solutions”. Journal of Materials, Processes and Environment, vol. 4, pp.113-118, 2016.
[14] T. Benhalima, H. Ferfera-Harrar, D. Lerari, “Optimization of carboxymethyl cellulose hydrogels beads generated by an anionic surfactant micelle templating for cationic dye uptake: Swelling, sorption and reusability studies”, Int. J. Biol. Macromol., vol. 105, pp. 1025-1042, 2017.
[15] T. Benhalima, H. Ferfera-Harrar, “Eco-friendly porous carboxymethyl cellulose/dextran sulfate composite beads as reusable and efficient adsorbents of cationic dye methylene blue”, Int. J. Biol. Macromol., vol. 132, pp. 126-141, 2019.
[16] H. Ferfera-Harrar, N. Dairi, “Elaboration of cellulose acetate nanobiocomposites using acidified gelatin-montmorillonite as nanofiller: Morphology, properties, and biodegradation studies”, Polym. Composite, vol. 34, pp.1515–1524, 2013.
[17] Y. T. Xie, A. Q. Wang, “Preparation and Swelling Behaviour of Chitosan-g-poly(acrylic acid)/Muscovite Superabsorbent Composites”; Iran. Polym. J., vol. 19, pp. 131-141, 2010.
[18] J. Zhang, Q. Wang, A. Wang, “Synthesis and characterization of chitosan-g-poly(acrylicacid)/attapulgite superabsorbent composites”, Carbohyd. Polym., vol. 68, pp. 367-374, 2007.
[19] S. K. Lagergren, “About the theory of so-called adsorption of soluble substances”, Sven Vetenskapsakad Handingarl., vol. 24 pp.1–39, (1898).
[20] Y.S. Ho, G. Mckay, “Pseudo-second order model for sorption processes”, Process Biochem., vol. 34, pp. 451-465, 1999.
[21] R.R. Pawar, Lalhmunsiama, P. Gupta, S.Y. Sawant, B. Shahmoradi, S.M. Lee, Porous synthetic hectorite clay-alginate composite beads for effective adsorption of methylene blue dye from aqueous solution., Int. J. Biol. Macromol., vol. 114, pp.1315–1324, 2018.
[22] M. V. Nagarpita, P. Roy, S. B. Shruthi, “Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes”, Int. J. Biol. Macromol., vol. 102, pp. 1226-1240, 2017.
[23] S. Han, T. Wang, B. Li, “Preparation of a hydroxyethyl-titanium dioxide-carboxymethyl cellulose hydrogel cage and its effect on the removal of methylene blue”, J. Appl. Polym. Sci. vol. 134, pp.44925, 2017.
[24] H.M. F. “Freundlich, Uber die adsorption in losungen”, Z. Phys. Chem., vol. 57, pp. 385–470, 1906.
[25] I. Langmuir, “The adsorption of gases on plane surface of glass, Mica and Platinum”, J. Am. Chem. Soc., vol. 40, pp. 1361–1403, 1918.
[26] S. Dawood, T.K. Sen, “Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design”, Water Res., vol. 46, pp.1933–1946, 2012.