Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris
References:
[1] Razzak, S.A., et al., Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 2013. 27: p. 622-653.
[2] Barclay, W. and K. Apt, Strategies for bioprospecting microalgae for potential commercial applications. Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Chichester, 2013: p. 69-79.
[3] Cheng, J., et al., Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresource technology, 2013. 144: p. 321-327.
[4] Al Ketife, A.M., S. Judd, and H. Znad, Optimization of cultivation conditions for combined nutrient removal and CO2 fixation in a batch photobioreactor. Journal of Chemical Technology & Biotechnology, 2017. 92(5): p. 1085-1093.
[5] Tebbani, S., et al., CO2 biofixation by Microalgae: automation process. 2014: Wiley-ISTE.
[6] Naderi, G., M.O. Tade, and H. Znad, Modified photobioreactor for biofixation of carbon dioxide by Chlorella vulgaris at different light intensities. Chemical Engineering & Technology, 2015. 38(8): p. 1371-1379.
[7] Cheng, L., et al., Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and purification technology, 2006. 50(3): p. 324-329.
[8] Cheng, J., et al., Improving the CO 2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond. Korean Journal of Chemical Engineering, 2018. 35(2): p. 498-502.
[9] Yoo, C., et al., Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource technology, 2010. 101(1): p. S71-S74.
[10] Gouveia, L., et al., Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Research, 2016. 16: p. 167-176.
[11] Maity, J.P., et al., Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–A mini review. Energy, 2014. 78: p. 104-113.
[12] De-Bashan, L.E., et al., Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water research, 2002. 36(12): p. 2941-2948.
[13] Bayramoğlu, G., et al., Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 2006. 81(1): p. 35-43.
[14] Hernandez, J.-P., L.E. de-Bashan, and Y. Bashan, Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 2006. 38(1-2): p. 190-198.
[15] Park, J. and R. Craggs, Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Science and Technology, 2010: p. 633-639.
[16] Beuckels, A., E. Smolders, and K. Muylaert, Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water research, 2015. 77: p. 98-106.
[17] Hodges, A., et al., Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation. Chemosphere, 2017. 174: p. 46-48.
[18] Anjos, M., et al., Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource technology, 2013. 139: p. 149-154.
[19] Zhang, K., N. Kurano, and S. Miyachi, Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess and biosystems engineering, 2002. 25(2): p. 97-101.
[20] Kasiri, S., et al., Optimization of CO2 fixation by Chlorella kessleri using response surface methodology. Chemical Engineering Science, 2015. 127: p. 31-39.
[21] Chinnasamy, S., et al., Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International journal of molecular sciences, 2009. 10(2): p. 518-532.
[22] Hulatt, C.J. and D.N. Thomas, Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors. Bioresource technology, 2011. 102(10): p. 5775-5787.
[23] Fan, L.H., et al., Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane‐photobioreactor. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 2007. 30(8): p. 1094-1099.
[24] Han, F., et al., Optimization and lipid production enhancement of microalgae culture by efficiently changing the conditions along with the growth-state. Energy Conversion and Management, 2015. 90: p. 315-322.
[25] Cheah, W.Y., et al., Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource technology, 2015. 184: p. 190-201.
[26] Ho, S.-H., et al., Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresource Technology, 2013. 135: p. 157-165.
[27] Shabani, M., CO2 bio-sequestration by Chlorella vulgaris and Spirulina platensis in response to different levels of salinity and CO2. Proceedings of the International Academy of Ecology and Environmental Sciences, 2016. 6(2): p. 53.
[28] Assunção, J., et al., CO2 utilization in the production of biomass and biocompounds by three different microalgae. Engineering in Life Sciences, 2017. 17(10): p. 1126-1135.
[29] Kuo, C.-M., et al., Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource technology, 2016. 221: p. 241-250.
[30] Chaudhary, R., A.K. Dikshit, and Y.W. Tong, Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 2017: p. 1-8.
[31] Nayak, M., A. Karemore, and R. Sen, Performance evaluation of microalgae for concomitant wastewater bioremediation, CO2 biofixation and lipid biosynthesis for biodiesel application. Algal Research, 2016. 16: p. 216-223.
[32] Kassim, M.A. and T.K. Meng, Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the Total Environment, 2017. 584: p. 1121-1129.
[33] Gonçalves, A.L., et al., The effect of increasing CO2 concentrations on its capture, biomass production and wastewater bioremediation by microalgae and cyanobacteria. Algal research, 2016. 14: p. 127-136.
[34] Ferreira, A., et al., Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purposes. Journal of cleaner production, 2017. 165: p. 1316-1327.