The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing
References:
[1] Shaeri, M.H.; Salehi, M.T.; Seyyedein, S.H.; Abutalebi, M.R.; Park, J.K.; Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Materials & Design, Volume 57, 2014, Pages 250-257.
[2] Haase, C.; Kremer, O.; Hu, W.; Ingendahl. T.; Lapovok, R.; Molodov, D.A.; Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: Microstructure, texture, and mechanical properties, Acta Materialia, Volume 107, 2016, Pages 239-253.
[3] Koizumi, T.; Kuroda, M.; Grain size effects in aluminum processed by severe plastic deformation, Materials Science and Engineering: A, Volume 710, 2018, Pages 300-308.
[4] Faria, C. G.; Almeida, N. G. S.; Aguilar, M. T. P.; Cetlin, P. R. Increasing the work hardening capacity of equal channel angular pressed (ECAPed) aluminum through multi-axial compression (MAC). Materials Letters. v. 174, p. 153-156, 2016.
[5] Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J.; Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, Volume 60, 2014, Pages 130-207.
[6] Xu, X.; Zhang, Q.; Hu, N.; Huang, Y.; Langdon, T.G.; Using an Al–Cu binary alloy to compare processing by multi-axial compression and high-pressure torsion, Mater. Sci. Eng. A, 588 (2013), pp. 280-287.
[7] Faria, C. G.; Almeida, N. G. S.; Bubani, F.C.; Balzuweit, K.; Aguilar, M. T. P.; Cetlin, P. R.; Microstructural evolution in the low strain amplitude multi-axial compression (LSA-MAC) after equal channel equal pressing (ECAP) of aluminum, Materials Letters, Volume 227, 2018, Pages 149-153.
[8] Valiev, R. Z.; Langdon T.G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science. V. 51, p. 881-981, 2006.
[9] Segal, V. M., Materials Processing by Simple Shear. Materials Science and Engineering, v. A197, p. 157-164, 1995.
[10] Jin, Y. G.; Baek, H. M.; Hwang, S. K.; Im,Y. T.; Jeon, B. C. Continuous high strength aluminum bolt manufacturing by the spring-loaded ECAP system. Journal of Materials Processing Technology. v. 212, p. 848-855, 2012.
[11] Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T. G. Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Materialia, V. 35, n. 2, p. 143-146, 1996.
[12] Purcek, G., Altan, B. S., Miskioglu, I., Ooi, P. H., Processing of Eutectic Zn – 5% Al Alloy by Equal-Channel Angular Pressing. Journal of Materials Processing Technology, v. 148, p. 279-287, 2004.
[13] Figueiredo, R. B. Processamento de uma liga PB-4%SB por Extrusão Angular em Canais iguais. Belo Horizonte: Escola de Engenharia da UFMG, 2005. 118p (M Sc Dissertation).
[14] Semiatin, S. L., Brown, J. O., Brown, T. M., Delo, D. P., Bieler, T. R., Beynon, J. H.; Strain-Path Effects During Hot Working of Ti-6Al-4V with a Colony Alpha Microstructure. Metallurgical and Materials Transactions, v. 32A, p. 1556-1559, 2001.
[15] Silva, F.R.F., et al. Microstructural evolution of an if steel deformed by equal channel angular pressing. Tecnol. Metal. Materials, vol. 5, no. 4, p. 193-197, 2009.
[16] Almeida, N. G. S. Comportamento mecânico da liga Al 6351 submetida à extrusão angular em canais iguais e compressão multiaxial cíclica. Belo Horizonte: Escola de Engenharia da UFMG, 2017. 90p (M Sc Dissertation).