The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber
References:
[1] Z. Hashin, “Analysis of composite materials,” J. App. Mech., vol.50, no.3, pp. 481-505, Sep. 1983.
[2] G. Jayamol, M. S. Sreekala, T. A. Sabu, “A review on interface modification and characterization of natural fiber reinforced plastic composites,” Polym. Eng. and Sci., vol. 41, no.9, pp. 1471-1485, Apr. 2004.
[3] N. N. Ghosh, B. Kiskan, Y. Yagci, “Polybenzoxazines-New high performance thermosetting resins: Synthesis and Properties,” Prog. in Polym. Sci., vol.32, no.11, pp.1344-1391, Nov. 2007 .
[4] E. Sogut, A. C. Seydim, “Biyobazlı nanokompozitler ve gıda ambalajlamadaki uygulamaları,” J. of Food, vol.42, no.6, pp. 821-833, Dec. 2017.
[5] M. Kaya, “Plastik nanokompozitler,” Pagev Plastik Dergisi, 2003.
[6] W. Arayapranee, G. L. A. Rempel, “Comparative study of the cure characteristics, processibility, mechanical properties, ageing and morphology of rice husk ash, silica and carbon black filled 75:25 NR/EPDM blends,” J. Appl. Polym. Sci., vol.109, no.2, pp.932-941, Apr. 2008.
[7] W. Obrecht, J. P. Lambert, M. Happ, C. S. Oppenheimer, J. Dunn, R. Krüger, “Rubber,” 4.Emulsion Rubbers in Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH, 2012.
[8] P. W. Allen, “Natural Rubber and the Synthetics,” London: Crosby Lockwood, 1972.
[9] C. F. Antunes, V. M. Duin , A. V. Machado, “Morphology and phase inversion of EPDM/PP blends – effect of viscosity and elasticity,” Polym. Test., vol.30, no.8, pp. 907–915, Dec. 2011 .
[10] W. K. Wang, W. Yang, R. Y. Bao, B. H. Xie, M. B. Yang, “Effect of repetitive processing on the mechanical properties and fracture toughness of dynamically vulcanized iPP/EPDM blends,” J. Appl. Polym. Sci., vol.120, no.1, pp.86–94, Oct. 2010.
[11] H. S. Jung, M. C. Choi, Y. W. Chang, P. H. Kang, S. C. Hong, “Facile preparation of thermoplastic elastomer with high service temperature from dry selective curing of compatibilized EPDM/polyamide-12 blends,” Europ. Polym. J., vol.66, pp.367-375, May 2015.
[12] D. M. Stelescu, A. Airinei, M. Homocianu, N. Fifere, D. Timpu, M. Aflori, “Structural characteristics of some high density polyethylene/EPDM blends,” Polym. Test., vol.32, no.2, pp. 187–196, 2013.
[13] E. Lourenço, M. I. Felisberti, “Thermal and mechanical properties of in-situ polymerized PS/EPDM blends,” Europ. Polym. J., vol.42, no.10, pp. 2632–2645, Oct. 2006.
[14] J. H. Go, C. S. Ha, “Rheology and Properties of EPDM/BR Blends with or Without a Homogenizing Agent or a Coupling Agent,” J. App. Polym. Sci., vol.62, no.3, pp. 509-521, Oct 1996.
[15] K. H. Kim, W. J. Cho, C. S. Ha, “Properties of dynamically vulcanized EPDM and LLDPE blends,” J. Appl. Polym. Sci., vol.59, no.3, pp. 407-414, Jan 1996.
[16] M. Xanthos, “Functional Fillers for Plastics, Part 1,” Wiley‐VCH Verlag GmbH&Co. KGaA 10.1002/3527605096, 2005: 1-16.
[17] A. Ashori, “Wood plastic composites as promising green-composites for automotive industries,” Bioresource Techn., vol.99, no.11, pp.4661-4667, Jul. 2008.
[18] B. Poyraz, A. Tozluoglu, Z. Candan, A. Demir, M. Yavuz, U. Buyuksari, H. I. Unal, H. Fidan, R. C. Saka, “TEMPO-treated CNF Composites: Pulp and Matrix Effect,” Fibers and Polymers, vol.19, no.1, pp.195-204, Jan. 2018 .
[19] M. J. Cho, B. D. Park, “Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites,” J. Ind. and Eng. Chem., vol.17, no.1, pp.36-40, Jan.2011.
[20] M. Paakko, M. Ankerfors, H. Kosonen, A. Nykanen, T. Lindstrom, “Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels,” Biomacromolecules, vol.8, no.6, pp.1934-1941, May 2007.
[21] T. Saito, S. Kumura, Y. Nishiyama, A. Isogai, “Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose,” Biomacromolecules, vol.8, no.8, pp.2485-2491, Jul. 2007.
[22] I. Besbes, S. Alila, S. Boufi, “Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content,” Carbohydr. Polym., vol.84, no.3, pp.975-983, Mar. 2011.
[23] J. A. F. Gamelas, J. Pedrosa, A. F. Lourenço, P. Mutje, I. Gonzalez, G. Chinga-Carrasco, G. Singh, P. J. T. Ferreira, “On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment,” Micron, vol.72, pp.28-33, May 2015.
[24] A. Cobut, H. Sehaqui, L. A. Berglund, “Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix,” Bioresources, vol.9, no.2, pp.3276-3289, 2014.
[25] L. Melone, L. Altomare, I. Alfieri, A. Lorenzi, L. Nardo, C. Punta, “Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: Synthesis, characterization, and photocatalytic properties,” J. of Photochem. and Photobiology A: Chem, vol.261, pp.53-60, Jun 2013.
[26] Z. Quifeng, C. Zhiyong, G. Shaoqin, “Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents,” J. Mater. Chem., vol.9, no.1, pp.1-31, 2014.