The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries
References:
[1] S. A. Kalota, I. I. Rahmim, and H. Expertech Consulting Inc., Irvine and E-MetaVenture, Inc., “Solve the Five Most Common FCC Problems,” in AIChE Spring National Meeting, 2003, no. 1.
[2] Kuo R., Tan A., and BASF Corp., “Troubleshooting catalyst losses in the FCC unit,” Adv. Catal. Technol., 2017.
[3] M. Kraxner, T. Frischmann, T. Kofler, M. Pillei, and American Institute of Chemical Engineers, “An Empirical Comparison of Two Different Cyclone Designs in the Usage of a Third Stage Separator,” in 8th World Congress on Particle Technology, 2018.
[4] H. Dries, M. Patel, N. Van Dijk, and T. N. Shell Global Solutions International BV Amsterdam, “New Advances in Third-Stage Separators,” in Updates on Process Technology, 2000.
[5] Climate and Clean Air Coalition, “Cleaning up the Global On-road Diesel fleet - A global strategy to introduce low sulphur fuels and cleaner diesel vehicles,” 2016.
[6] S. Haridoss, “A Study on Role of Catalyst used in Catalytic Cracking process in Petroleum Refining,” Int. J. ChemTech Res., vol. 10, no. 7, pp. 79–86, 2017.
[7] A. A. Avidan and R. Shinnar, “Development of Catalytic Cracking Technology. A Lesson in Chemical Reactor Design,” Ind. Eng. Chem. Res., vol. 29, no. 6, pp. 931–942, 1990.
[8] C. I. C. Pinheiro et al., “Fluid catalytic cracking (FCC) process modeling, simulation, and control,” Ind. Eng. Chem. Res., vol. 51, no. 1, pp. 1–29, 2012.
[9] J. Laine and D. L. Trimm, “Conversion of heavy oils into more desirable feedstocks,” J. Chem. Technol. Biotechnol., vol. 32, no. 7–12, pp. 813–833, 1982.
[10] B. Bonser, “Refining Process,” SlidePlayer.com Inc., 2019. (Online). Available: https://slideplayer.com/user/4247183/. (Accessed: 13-Apr-2019).
[11] G. A. Somorjai, “Catalysis and Surface Science,” Reprint., H. Heinemann and G. A. Somorjai, Eds. Routledge, 2017, pp. 16–17.
[12] M. R. Riazi, S. Eser, S. S. Agrawal, and J. L. P. Díez, “Petroleum Refining and Natural Gas Processing,” in Petroleum Refining and Natural Gas Processing, 2013, pp. 135–136.
[13] K. A. Couch and L. M. Wolschlag, “Upgrade FCC performance - Part 1,” Hydrocarb. Process., vol. 89, no. 9, pp. 57–65, 2010.
[14] H. Dries, Shell Global Solutions International, R. McAuley, and Shell UK Oil Products, “FCC cyclones – a vital element in profitability,” in NPRA, 2000, pp. 21–27.
[15] S. Catalano et al., “Cyclones / Hydrocyclones,” Visual Encyclopedia of Chemical Engineering. The Regents of the University of Michigan and its licensors, pp. 1–6, 2018.
[16] T. M. Knowlton, “Cyclone Systems in Circulating Fluidized Beds,” in 12th International Conference on Fluidized Bed Technology, 2017, vol. 005, pp. 47–64.
[17] P. H. S. Amos A. Avidan, Frederick J. Krambeck Mobil Research & Development Corp. Paulsboro, N.J. Hartley Owen and N. J. Mobil Research & Development Corp., Princeton, “FCC Closed-cyclone System Eliminates Post-Riser Cracking,” Oil Gas J., vol. 88, no. 13, 1990.
[18] R. J. Glendinning, H. L. McQuiston, and ABB Lummus Global, “Direct-coupled cyclone and feed injection,” Digit. Refin., p. 2, 1996.
[19] J. W. Mcternan and I. Abu-Mahfouz, “A Computational Fluid Dynamics Study of Fluid Catalytic Cracking Cyclones,” in COMSOL Conference, 2014.
[20] G. Sun, J. Chen, and M. Shi, “Optimization and Application of Reverse-flow Cyclones,” China Particuology, vol. 3, pp. 43–46, 2005.
[21] J. Gimbun, T. G. Chuah, T. S. Y. Choong, and A. Fakhru’l-Razi, “Prediction of the effects of cone tip diameter on the cyclone performance,” J. Aerosol Sci., vol. 36, no. 8, pp. 1056–1065, 2005.
[22] F. Kaya and I. Karagoz, “Numerical investigation of performance characteristics of a cyclone prolonged with a dipleg,” Chem. Eng. J., vol. 151, no. 1–3, pp. 39–45, 2009.
[23] E. Balestrin, R. K. Decker, D. Noriler, J. C. S. C. Bastos, and H. F. Meier, “An alternative for the collection of small particles in cyclones : Experimental analysis and CFD modeling,” Sep. Purif. Technol., vol. 184, pp. 54–65, 2017.
[24] K. Elsayed, “Design of a novel gas cyclone vortex finder using the adjoint method,” Sep. Purif. Technol., vol. 142, pp. 274–286, 2015.
[25] M. Wasilewski and L. Singh, “Optimization of the geometry of cyclone separators used in clinker burning process : A case study,” Powder Technol., vol. 313, pp. 293–302, 2017.
[26] F. Parvaz, S. H. Hosseini, G. Ahmadi, and K. Elsayed, “Impacts of the vortex finder eccentricity on the flow pattern and performance of a gas cyclone,” Sep. Purif. Technol., vol. 187, pp. 1–13, 2017.
[27] A. N. Huang et al., “Influence of a laminarizer at the inlet on the classification performance of a cyclone separator,” Sep. Purif. Technol., vol. 174, pp. 408–416, 2017.
[28] G. Zhang, G. Chen, and X. Yan, “Evaluation and improvement of particle collection efficiency and pressure drop of cyclones by redistribution of dustbins,” Chem. Eng. Res. Des., vol. 139, pp. 52–61, 2018.
[29] B. Zhao, “Development of a new method for evaluating cyclone efficiency,” Chem. Eng. Process. Process Intensif., vol. 44, no. 4, pp. 447–451, 2005.