References:
[1] R.S. Tsay. Analysis of Financial Time Series. John Wiley & Sons, Inc, 2002.
[2] R. Luo, W. Zhang, X. Xu, and J. Wang. “A Neural Stochastic Volatility Model”. arxiv preprint arXiv:1712.00504v1, 2017.
[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. “Generative Adversarial Nets.” Advances in Neural Information Processing Systems 27, Curran Associates, Inc., 2014, pp 2672-2680.
[4] W. Fedus, M. Rosca, B. Lakshminarayanan, A.M. Dai, S. Mohamed, and I. Goodfellow. “Many Paths To Equilibrium: GANs Do Not Need To Decrease a Divergence at Every Step” arXiv preprint arXiv: 1710.08446v3, 2018.
[5] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein GAN.” arXiv preprint arXiv:1701.07875v3, 2017.
[6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. “Improved Training of Wasserstein GANs.” arXiv preprint arXiv: 1704.00028, 2017.
[7] N. Kodali, J. Abernethy, J. Hays, Z. Kira. “On Convergence and Stability of GANs.” arXiv preprint arXiv:1705.07215, 2017.
[8] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen. “Improve Techniques for Training GANs.” arXiv preprint arXiv 1606.03498v1, 2016.
[9] X. Mao, Q. Li, H. Xie, R.YK Lau, Z. Wang, and S. Paul Smolley. “Least squares generative adversarial networks.” arXiv preprint ArXiv: 1611.04076, 2016.
[10] Mehdi Mirza and Simon Osindero. “Conditional Generative Adversarial Nets.” arXiv preprint ArXiv:1411.1784v1, 2014.
[11] Global Association of Risk Professionals (GARP). 2016 Financial Risk Manager (FRM) Part II: Market Risk Measurement and Management, Fifth Edition. Pearson Education, Inc., 2016.
[12] Ernst & Young. “Fundamental review of the trading book (FRTB): the revised market risk capital framework and its implementations”. www.ey.com/Publication/vwLUAssets/ey-fundamental-review-of-the-trading-book/$FILE/ey-fundamental-review-of-the-trading-book.pdf. 2016
[13] Board of Governors of the Federal Reserve System. “Comprehensive Capital Analysis and Review 2012: Methodology and Results for Stress Scenario Projections”, www.federalreserve.gov. 2012.
[14] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. “Are GANs Created Equal? A Large-Scale Study” arXiv preprint ArXiv: 1711.10337v3, 2018.
[15] Keras: The Python Deep Learning library, keras.io. Date of access: 20 Sep 2018
[16] H. Magus and O. Christoffer. “Feedforward neural networks with ReLU activation functions are linear splines” PhD diss., Lund University, 2017.
[17] R. Balestiero and R. Baraniuk. “Mad Max: Affine Spline Insights into Deep Learning” arXiv preprint ArXiv:1805.06576v5, 2018.
[18] Kernel Approximation. Scikit-learn v0.20.2. scikit-learn.org/stable/modules/kernel_approximation.html,2019
[19] Yahoo Finance. finance.yahoo.com. Date of access: 20 Aug 2018.
[20] A. Radford, L. Metz and Soumith Chintala. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks” arXiv preprint ArXiv:1511.0643, 2015.
[21] D. Berthlot, T. Schumm, and L.Metz. “BEGAN: Boundary equilibrium GAN” arXiv preprint ArXiv: 1703.10717, 2017.
[22] X. Zhou, Z. Pan, G. Hu, S. Tang and C. Zhao. “Stock Market Prediction on High Frequency Data Using Generative Adversarial Nets”. Mathematical Problems in Engineering, Volume 2018, Article ID 4907423, 11 pages, 2018.
[23] U.S. Census Bureau. www.census.gov. Date of access: 10 Aug 2018.