Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31176

Select areas to restrict search in scientific publication database:
Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.
Digital Object Identifier (DOI):


[1] J. J. Shih, D. J. Krusienski, and J. R. Wolpaw, “Brain-computer interfaces in medicine,” Mayo Clin. Proc., vol. 87, no. 3, pp. 268–279, 2012, doi: 10.1016/j.mayocp.2011.12.008.
[2] P. P. Vu et al., “A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees,” Sci. Transl. Med., vol. 12, no. 533, pp. 1–12, 2020, doi: 10.1126/scitranslmed.aay2857.
[3] D. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, “Electroencephalographic (EEG) control of three-dimensional movement,” J. Neural Eng., vol. 7, no. 3, p. 36007, Jun. 2010, doi: 10.1088/1741-2560/7/3/036007.
[4] T.-P. Jung, S. Makeig, A. J. Bell, and T. J. Sejnowski, “Independent Component Analysis of Electroencephalographic and Event-Related Potential Data,” in Central Auditory Processing and Neural Modeling, P. W. F. Poon and J. F. Brugge, Eds. Boston, MA: Springer US, 1998, pp. 189–197.
[5] Y. Wang and S. Makeig, “Predicting intended movement direction using EEG from human posterior parietal cortex,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5638 LNAI, pp. 437–446, 2009, doi: 10.1007/978-3-642-02812-0_52.
[6] K. L. Snyder, J. E. Kline, H. J. Huang, and D. P. Ferris, “Independent component analysis of gait-related movement artifact recorded using EEG electrodes during treadmill walking,” Front. Hum. Neurosci., vol. 9, no. DEC, pp. 1–13, 2015, doi: 10.3389/fnhum.2015.00639.
[7] A. Delorme, J. Palmer, J. Onton, R. Oostenveld, and S. Makeig, “Independent EEG sources are dipolar,” PLoS One, vol. 7, no. 2, 2012, doi: 10.1371/journal.pone.0030135.
[8] R. Grandchamp et al., “Stability of ICA decomposition across within-subject EEG datasets. To cite this version : HAL Id : hal-00797464 Stability of ICA decomposition across within-subject EEG datasets,” 2013.
[9] F. Cong et al., “Validating rationale of group-level component analysis based on estimating number of sources in EEG through model order selection,” J. Neurosci. Methods, vol. 212, no. 1, pp. 165–172, 2013, doi: 10.1016/j.jneumeth.2012.09.029.
[10] R. J. Huster, S. M. Plis, and V. D. Calhoun, “Group-level component analyses of EEG: Validation and evaluation,” Front. Neurosci., vol. 9, no. JUL, pp. 1–14, 2015, doi: 10.3389/fnins.2015.00254.
[11] S. Kakei, D. S. Hoffman, and P. L. Strick, “Sensorimotor transformations in cortical motor areas,” Neurosci. Res., vol. 46, no. 1, pp. 1–10, 2003, doi: 10.1016/S0168-0102(03)00031-2.
[12] Y. Fujiwara, J. Lee, T. Ishikawa, S. Kakei, and J. Izawa, “Diverse coordinate frames on sensorimotor areas in visuomotor transformation,” Sci. Rep., vol. 7, no. 1, p. 14950, 2017, doi: 10.1038/s41598-017-14579-3.
[13] N. Yoshimura, H. Tsuda, T. Kawase, H. Kambara, and Y. Koike, “Decoding finger movement in humans using synergy of EEG cortical current signals,” Sci. Rep., vol. 7, no. 1, pp. 1–11, 2017, doi: 10.1038/s41598-017-09770-5.
[14] J. Palmer, K. Kreutz-Delgado, and S. Makeig, “AMICA: An Adaptive Mixture of Independent Component Analyzers with Shared Components,” San Diego, CA Tech. report, Swart. Cent. Comput. Neurosci., pp. 1–15, 2011, (Online). Available:
[15] L. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, “ICLabel: An automated electroencephalographic independent component classifier, dataset, and website,” Neuroimage, vol. 198, no. April, pp. 181–197, 2019, doi: 10.1016/j.neuroimage.2019.05.026.
[16] O. Yamashita, M. Sato, T. Yoshioka, F. Tong, and Y. Kamitani, “Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.,” Neuroimage, vol. 42, no. 4, pp. 1414–1429, Oct. 2008, doi: 10.1016/j.neuroimage.2008.05.050.
[17] N. Yoshimura et al., “Dissociable neural representations of wrist motor coordinate frames in human motor cortices,” Neuroimage, vol. 97, pp. 53–61, 2014, doi: 10.1016/j.neuroimage.2014.04.046.
[18] T. Nichols and A. Holmes, “Nonparametric Permutation Tests for Functional Neuroimaging,” Hum. Brain Funct. Second Ed., vol. 25, no. August 1999, pp. 887–910, 2003, doi: 10.1016/B978-012264841-0/50048-2.
[19] J. Onton and S. Makeig, “Information-based modeling of event-related brain dynamics,” Prog. Brain Res., vol. 159, pp. 99–120, 2006, doi: 10.1016/S0079-6123(06)59007-7.
[20] H. Tanaka, M. Miyakoshi, and S. Makeig, “Dynamics of directional tuning and reference frames in humans: A high-density EEG study,” Sci. Rep., vol. 8, no. 1, pp. 1–18, 2018, doi: 10.1038/s41598-018-26609-9.
[21] E. T. Rolls, C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot, “Automated anatomical labelling atlas 3.,” Neuroimage, vol. 206, p. 116189, Feb. 2020, doi: 10.1016/j.neuroimage.2019.116189.
[22] N. Robinson, C. Guan, A. P. Vinod, K. Keng Ang, and K. Peng Tee, “Multi-class EEG classification of voluntary hand movement directions,” J. Neural Eng., vol. 10, no. 5, 2013, doi: 10.1088/1741-2560/10/5/056018.
[23] K. Anam, M. Nuh, and A. Al-Jumaily, “Comparison of EEG pattern recognition of motor imagery for finger movement classification,” Int. Conf. Electr. Eng. Comput. Sci. Informatics, pp. 24–27, 2019, doi: 10.23919/EECSI48112.2019.8977037.
[24] K. Liao, R. Xiao, J. Gonzalez, and L. Ding, “Decoding individual finger movements from one hand using human EEG signals,” PLoS One, vol. 9, no. 1, pp. 1–12, 2014, doi: 10.1371/journal.pone.0085192.
[25] T. Jia et al., “Small-Dimension Feature Matrix Construction Method for Decoding Repetitive Finger Movements from Electroencephalogram Signals,” IEEE Access, vol. 8, pp. 56060–56071, 2020, doi: 10.1109/ACCESS.2020.2982210.
[26] R. Alazrai, H. Alwanni, and M. I. Daoud, “EEG-based BCI system for decoding finger movements within the same hand,” Neurosci. Lett., vol. 698, pp. 113–120, 2019, doi:
[27] T. Milekovic et al., “An online brain-machine interface using decoding of movement direction from the human electrocorticogram,” J. Neural Eng., vol. 9, no. 4, 2012, doi: 10.1088/1741-2560/9/4/046003.
[28] J. Lehtonen, P. Jylänki, L. Kauhanen, and M. Sams, “Online classification of single EEG trials during finger movements,” IEEE Trans. Biomed. Eng., vol. 55, no. 2, pp. 713–720, 2008, doi: 10.1109/TBME.2007.912653.
[29] S. Bhattacharyya, M. Pal, A. Konar, and D. N. Tibarewala, “An interval type-2 fuzzy approach for real-time EEG-based control of wrist and finger movement,” Biomed. Signal Process. Control, vol. 21, pp. 90–98, 2015, doi: 10.1016/j.bspc.2015.05.004.
[30] K. Whittingstall, M. Bernier, J. C. Houde, D. Fortin, and M. Descoteaux, “Structural network underlying visuospatial imagery in humans,” Cortex, vol. 56, pp. 85–98, 2014, doi: 10.1016/j.cortex.2013.02.004.
[31] N. Wenderoth, F. Debaere, S. Sunaert, and S. P. Swinnen, “The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour,” Eur. J. Neurosci., vol. 22, no. 1, pp. 235–246, 2005, doi: 10.1111/j.1460-9568.2005.04176.x.
[32] N. Robinson, C. Guan, A. P. Vinod, K. Keng Ang, and K. Peng Tee, “Multi-class EEG classification of voluntary hand movement directions,” J. Neural Eng., vol. 10, no. 5, 2013, doi: 10.1088/1741-2560/10/5/056018.
[33] K. Liao, R. Xiao, J. Gonzalez, and L. Ding, “Decoding individual finger movements from one hand using human EEG signals,” PLoS One, vol. 9, no. 1, pp. 1–12, 2014, doi: 10.1371/journal.pone.0085192.
[34] E. Y. L. Lew, R. Chavarriaga, S. Silvoni, and J. del R. Millán, “Single trial prediction of self-paced reaching directions from EEG signals,” Front. Neurosci., vol. 8, no. AUG, pp. 1–13, 2014, doi: 10.3389/fnins.2014.00222.
[35] J. Cho, J. Jeong, K. Shim, D. Kim, and S. Lee, “Classification of Hand Motions within EEG Signals for Non-Invasive BCI-Based Robot Hand Control,” in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 515–518, doi: 10.1109/SMC.2018.00097.
Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007