Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 31181


Select areas to restrict search in scientific publication database:
10011817
Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding
Abstract:
Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.
Digital Object Identifier (DOI):

References:

[1] T .J. Horvath, S. A. Berry, and N. R. Merski, “Hypersonic boundary/shear layer transition for blunt to slender configurations: a NASA Langley experimental perspective,” RTO-MP-AVT-111, Art. 22 (2004).
[2] K. D. Fong, X. Wang, and X. Zhong, “Numerical simulation of roughness effect on the stability of a hypersonic boundary layer,” Computers & Fluids. 96, 350-367 (2014).
[3] M. V. Morkovin, E. Reshotko, and T. Herbert, “Transition in open flow systems—a reassessment,” Bull. Am. Phys. Soc. 39, 1882 (1994)
[4] E. Reshotko, “Transient growth: a factor in bypass transition,” Phys. Fluids 13, 1067–1075 (2001).
[5] A. E.Von Doenhoff, and A. L. Braslow, “The effect of distributed surface roughness on laminar flow and flow control,” Pergamon Press, Lachmann edition (1961).
[6] S. P. Schneider, “Effects of roughness on hypersonic boundary-layer transition,” J. Spacecraft Rockets. 45, 193-209 (2008)
[7] M. Bernardini, S. Pirozzoli, and P. Orlandi, “Compressibility effects on roughness-induced boundary layer transition,” International Journal of Heat and Fluid Flow. 35, 45-51. (2012).
[8] M. A. Kegerise, R. A. King, M. Choudhari, F. Li, and A.T. Norris, “An experimental study of roughness-induced instabilities in a supersonic boundary layer,” 7th AIAA Theoretical Fluid Mechanics Conference. AIAA Paper 2014-2501 (2014).
[9] J. A. Redford, N.D. Sandham, and G. T. Roberts, “Numerical simulations of turbulent spots in supersonic boundary layers: effects of Mach number and wall temperature,” Progress in Aerospace Sciences, 52, 67-79 (2012).
[10] M. Bernardini, S. Pirozoli, P. Orlandi, and S. K. Lele, “Parameterization of Boundary-Layer Transition Induced by Isolated Roughness Elements” AIAA Journal 52 (10), 2261-2269 (2014).
[11] S. A. Berry, A.H, Auslender, and A.D. Dilley, “Hypersonic boundary-layer trip development for Hyer-X,” Journal of Spacecraft and Rocket, 38(6), 853-864 (2001).
[12] X. Deng and H. Zhang, “Developing high-order weighted compact nonlinear schemes,” Journal of Computational Physics. 165, 22-44 (2000).
[13] X. Deng, “High-order accurate dissipative weighted compact nonlinear schemes,” Science in China Series A: Mathematics. 45, 356-370 (2002).
[14] J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods,” Journal of Computational Physics. 40, 263-293 (1981).
[15] X. Deng, M. Mao, G. Tu, H. Liu, and H. Zhang, “Geometric conservation law and applications to high-order finite difference schemes with stationary grids,” Journal of Computational Physics. 230, 1100-1115 (2011).
[16] G. Tu, X. Deng, M. Mao, “A staggered non-oscillatory finite difference method for high-order discretization of viscous terms,” Acta Aerodynamica Sinica. 29, 10-15 (2011).
[17] X. Deng, M. Mao, G. Tu, H. Zhang, and Y. Zhang, “High-order and high accurate CFD methods and their applications for complex grid problems,” Communication in Computational Physics. 11, 1081-1102 (2012).
[18] X. Deng, M. Mao, G. Tu, Y. Zhang, and H. Zhan, “Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions,” AIAA Journal. 48, 2840-2851 (2010).
[19] C. Xu, X. Deng, L. Zhang, J. Fang, G. Wang, Y. Jiang, et al., “Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer,” Journal of Computational Physics, 278, 275-297 (2014).
[20] G. Tu, X. Zhao, M. Mao, J. Chen, X. Deng, and H. Liu, "Evaluation of Euler fluxes by a high-order CFD scheme: shock instability," International Journal of Computational Fluid Dynamics. 28, 171-186 (2014).
[21] G. Tu, X. Deng, Y. Min, M. Mao, H. Liu, “Method for evaluating spatial accuracy order of CFD and applications to WCNS scheme on four typically distorted meshes,” ACTA Aerodynamica Sinica. 2014, 32, 425-432 (2014).
[22] X. Zhao, G. Tu, H. Liu, M. Mao, and X. Deng, “Applications of WCNS-E-5 in shock-wave/boundary-layer interactions in hypersonic flows,” Transactions of Nanjing University of Aeronautics and Astronautics. 30, 81-86 (2013).
[23] P. Huerre and P. A. Monkewitz, “Local and global instabilities in spatially developing flows,” Annu. Rev. Fluid Mech. 22, 473-537 (1990).
[24] P. W. Bearman and M. M. Zdravkovich, “Flow around a circular cylinder near a plane boundary,” J. Fluid Mech. 89, 33-47 (1978).
[25] G. Tu, Z. Hu, and N. D. Sandham, “Enhanced instability of supersonic boundary layer using passive acoustic feedback,” Submitted to Physics of Fluids.
Vol:15 No:04 2021Vol:15 No:03 2021Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007