Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis
References:
[1] Vladimir Viktorov, “Numerical study of fluid mixing at different inlet flow rate ratios in tear drop and chain micromixers compared to a new H-C passive micromixer”, Engineering application of computational fluid dynamics, J., vol.10, no.1, pp.182-192, Feb 2016.
[2] S. Hossain, “Mixing Analysis of Passive Micromixer with unbalanced three split rhombic sub-channels.” J Micromachines., vol.5 no.1, pp.913-928, Oct 2014.
[3] M. S. Khalidha, “Comparative study on methods of Gold nanoparticles” Green and sustainable Chemistry J, vol., pp. 2012.
[4] S. Toghshi, “Size of Nanoparticles using a microfluidic device” of Chemical, Molecular, Nuclear, Material and Metallurgical Engineering J, vol 7., no., 2013.
[5] H. S. Heo, ”Enhancement of stirring in a straight channel at low Reynolds numbers with various block arrangements”, J of Mech. Sci. Technol. Vol. 19, pp.199-208, Jan 2005.
[6] W. Hengzi, “Passive mixing in microchannels by applying geometric variations” proc, In micromachining and microfabrication, .International society of Optics and Photonics, vol.4982, pp,282-289, Jan 2003.
[7] N. Rahim, ”Computational Fluid Dynamic Simulation of Mixing in Circular Cross Sectional Microchannel”, J., chemical engineering transactions, vol. 56, 2017.
[8] S. Das, “Numerical and experimental study of passive fluids mixing in micro-channels of different configurations”, J., Article in Microsystem Technologies Springer-Verlag GmbH Germany vol. 23, pp. 5977–5988, July 2017.
[9] G Karniadakis, “Microflows and Nanoflows Fundamentals and simulation”, Springer 2005.
[10] H. Sad Abadi, ”Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing”, Jof Micromech Microeng.vol.25, no. 9, Aug 2015.
[11] Camesasca M, “Staggered passive micromixers with fractal surface patterening” J of Micromech Microeng, vol.16, pp. 2298-2311, 2006.
[12] C. Wang, “Mixing of kiqyids using obstacles in Y type microchannels” J of science and Engineering, vol. 13, no 4, pp. 385-394, 2010.
[13] J. Kuncova-Kallio, ”PDMS and its suitability for analytical microfluidic devices” EMS Annual international conf, IEE, USA, pp. 6469 – 6472, Dec 2006.
[14] K. Efimenko, “Surface Modification of Sylgard-184 Polydimethylsiloxane Networks by Ultraviolet and Ultraviolet/Ozone Treatment”, J of Colloid and interface science vol., 254, pp 306-315 Oct 2002.
[15] Lung-Hsin Hung, Abraham Philip Lee, “Microfluidic devices for the synthesis of nanoparticles and biomaterials ”Journal of Medical and Biological Engineering, vol. 27, pp 1-7, nov 2006.
[16] Q. Zhang, ”In-situ synthesis of Polydimethylsiloxane – gold nanoparticles composite films and its application in microfluidic systems”, J of RSC, Lab on chip 2007.
[17] Byung. H. Jo, “Three Dimensional Microchannel fabrication in Polydimethylsiloxane Elastomer”, J of Microelectromechanical systems, vol 9, 2000.
[18] Q. Feng,”Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters”, JBiomicrofluidics, vol. 9, June 2015.
[19] C. Yang, “Microfluidic assisted synthesis of silver nanoparticles chitosan composite microparticles for antibacterial applications”. J. pharmasutics, Elsevier, vol 410., pp 493-500, Aug 2016.
[20] Attila Olah, ”Hydophobic recovery of UV/Ozone treated Polydimethylsiloxane: adhesion studies and mechanism of surface modification ”, J of Applied surface science vol.23,pp. 410-423.,January 2005.
[21] Kee Suk Ryu, chang Liu “Precision Patterning of PDMS Thin Films:A New fabrication method and its applications”, J of Mechanical and Biological Engineering., springer link., pp 112-114, 2002.
[22] C. Fu, “A novel and simple fabrication of method embedded SU-8 microchannels by UV lithography”, J. Phys.: Conf. Ser. 34, pp 330-335., 2006.
[23] M. Amritkar, “Development of simulation tool for investigating effect of hydro active surface modifications on efficiency of passive micro mixer” (section 2 is taken from our own paper, submitted for publication)
[24] Q. Feng, ”Microfluidic based high throughput synthesis of lipid poly (lactic-co-glycolic acid) NP synthesis”. J. Biomicrofluidics, vol9, 5, June 2015.
[25] Vu Thi Thu, “Fabrication of PDMS based microfluidic devices: application for synthesis of Magnetic Nanoparticles” J of Elecronicmaterials, vol 45 no 5, 2016.
[26] H. Sad Abadi, ”Uniform integration of gold nanoparticles inPDMS microfluidics with 3D micromixing”, J. Micromech. Microeng., pp 1-7., August 2015.