Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Publications Count: 30578


Select areas to restrict search in scientific publication database:
10011248
Uplink Throughput Prediction in Cellular Mobile Networks
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.
Digital Object Identifier (DOI):

References:

[1] J. Thomas Barnett, "Cisco Visual Networking Index (VNI) Global and Americas/EMEAR Mobile Data Traffic Forecast, 2017–2022," Cisco, 2019.
[2] Y. Egi, E. Eyceyurt, I. Kostanic, C. E. Otero, "An Efficient Approach for Evaluating Performance in LTE Wireless Networks," Las Vegas, 2017.
[3] Union, International telecommunication, "IMT traffic estimates for the years 2020 to 2030," Geneva, 2015.
[4] P. &. i. Inc, "Global Mobile Data Traffic Forecast, 2012 – 2017," Austin TX, 2013.
[5] Ericsson Mobility Report, Managing User Experience, Ericsson, 2016.
[6] Otero, Y. Egi C., "Machine-Learning and 3D Point-Cloud Based Signal Power Path Loss Model for the Deployment of Wireless Communication Systems," IEEE Access, vol. 7, pp. 42507-42517, 2019.
[7] Y. Egi, C. Otero, M. Ridley and E. Eyceyurt, "An Efficient Architecture for Modeling Path Loss on Forest Canopy Using LiDAR and Wireless Sensor Networks Fusion," in 23rd European Wireless Conference, Dresden, Germany, 2017.
[8] H. Konoshi, K. Kanai, J Katto, "Improvement of Throughput prediction Accuracy for Video Streaming in Mobile Environment," in IEEE 3rd Global Conference on Consumer Electronics, Tokyo, 2014.
[9] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang and W. Wei;, "LinkForecast: Cellular Link Bandwidth Prediction in LTE Networks," IEEE Transactions on Mobile Computing, vol. 17, pp. 1582-1594, 2018.
[10] Y. Liu and J.Y.B. Lee, "An Empirical Study of Throughput Prediction in Mobile Data Networks," in IEEE Global Communications Conference, San Diego, 2015.
[11] D. Lee, D. Lee, M. Choi and J. Lee, "Prediction of Network Throughput using ARIMA," in International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 2020.
[12] B. Wei, M. Okano, K. Kanai, W. Kawakami and J. Katto, "Throughput Prediction Using Recurrent Neural Network Model," in IEEE 7th Global Conference on Consumer Electronics, Nara, 2018.
[13] I. Oussakel, P. Owezarski, P. Berthou, "Cellular Uplink Bandwidth Prediction Based on Radio Measurements," in MobiWac, Miami, 2019.
[14] E. T. 1. 2. V. (2018-07), "Technical Specification Physical layer measurements, 5G; NR," 2018.
[15] D. S. Mehta and S. Chen, "A spearman correlation based star pattern recognition," in IEEE International Conference on Image Processing (ICIP), Beijing, 2017.
Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007