26
10004527
A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence
Abstract: With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution.
Digital Article Identifier (DOI):
25
9998038
Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition
Abstract: Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.
This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.
Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.
In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.
The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.
Digital Article Identifier (DOI):
24
9136
Detecting and Tracking Vehicles in Airborne Videos
Abstract: In this work, we present an automatic vehicle detection
system for airborne videos using combined features. We propose a
pixel-wise classification method for vehicle detection using Dynamic
Bayesian Networks. In spite of performing pixel-wise classification,
relations among neighboring pixels in a region are preserved in the
feature extraction process. The main novelty of the detection scheme is
that the extracted combined features comprise not only pixel-level
information but also region-level information. Afterwards, tracking is
performed on the detected vehicles. Tracking is performed using
efficient Kalman filter with dynamic particle sampling. Experiments
were conducted on a wide variety of airborne videos. We do not
assume prior information of camera heights, orientation, and target
object sizes in the proposed framework. The results demonstrate
flexibility and good generalization abilities of the proposed method on
a challenging dataset.
Digital Article Identifier (DOI):
23
10327
Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Abstract: During last decades, worldwide researchers dedicated
efforts to develop machine-based seismic Early Warning systems,
aiming at reducing the huge human losses and economic damages.
The elaboration time of seismic waveforms is to be reduced in order
to increase the time interval available for the activation of safety
measures. This paper suggests a Data Mining model able to correctly
and quickly estimate dangerousness of the running seismic event.
Several thousand seismic recordings of Japanese and Italian
earthquakes were analyzed and a model was obtained by means of a
Bayesian Network (BN), which was tested just over the first
recordings of seismic events in order to reduce the decision time and
the test results were very satisfactory.
The model was integrated within an Early Warning System
prototype able to collect and elaborate data from a seismic sensor
network, estimate the dangerousness of the running earthquake and
take the decision of activating the warning promptly.
Digital Article Identifier (DOI):
22
8008
Information Fusion as a Means of Forecasting Expenditures for Regenerating Complex Investment Goods
Abstract: Planning capacities when regenerating complex investment goods involves particular challenges in that the planning is subject to a large degree of uncertainty regarding load information. Using information fusion – by applying Bayesian Networks – a method is being developed for forecasting the anticipated expenditures (human labor, tool and machinery utilization, time etc.) for regenerating a good. The generated forecasts then later serve as a tool for planning capacities and ensure a greater stability in the planning processes.
Digital Article Identifier (DOI):
21
8968
Bond Graph and Bayesian Networks for Reliable Diagnosis
Abstract: Bond Graph as a unified multidisciplinary tool is widely
used not only for dynamic modelling but also for Fault Detection and
Isolation because of its structural and causal proprieties. A binary
Fault Signature Matrix is systematically generated but to make the
final binary decision is not always feasible because of the problems
revealed by such method. The purpose of this paper is introducing a
methodology for the improvement of the classical binary method of
decision-making, so that the unknown and identical failure signatures
can be treated to improve the robustness. This approach consists of
associating the evaluated residuals and the components reliability data
to build a Hybrid Bayesian Network. This network is used in two
distinct inference procedures: one for the continuous part and the
other for the discrete part. The continuous nodes of the network are
the prior probabilities of the components failures, which are used by
the inference procedure on the discrete part to compute the posterior
probabilities of the failures. The developed methodology is applied
to a real steam generator pilot process.
Digital Article Identifier (DOI):
20
685
Bayesian Network Model for Students- Laboratory Work Performance Assessment: An Empirical Investigation of the Optimal Construction Approach
Abstract: There are three approaches to complete Bayesian
Network (BN) model construction: total expert-centred, total datacentred,
and semi data-centred. These three approaches constitute the
basis of the empirical investigation undertaken and reported in this
paper. The objective is to determine, amongst these three
approaches, which is the optimal approach for the construction of a
BN-based model for the performance assessment of students-
laboratory work in a virtual electronic laboratory environment. BN
models were constructed using all three approaches, with respect to
the focus domain, and compared using a set of optimality criteria. In
addition, the impact of the size and source of the training, on the
performance of total data-centred and semi data-centred models was
investigated. The results of the investigation provide additional
insight for BN model constructors and contribute to literature
providing supportive evidence for the conceptual feasibility and
efficiency of structure and parameter learning from data. In addition,
the results highlight other interesting themes.
Digital Article Identifier (DOI):
19
7210
Data-organization Before Learning Multi-Entity Bayesian Networks Structure
Abstract: The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.
Digital Article Identifier (DOI):
18
15047
Improving Classification in Bayesian Networks using Structural Learning
Abstract: Naïve Bayes classifiers are simple probabilistic
classifiers. Classification extracts patterns by using data file with a set
of labeled training examples and is currently one of the most
significant areas in data mining. However, Naïve Bayes assumes the
independence among the features. Structural learning among the
features thus helps in the classification problem. In this study, the use
of structural learning in Bayesian Network is proposed to be applied
where there are relationships between the features when using the
Naïve Bayes. The improvement in the classification using structural
learning is shown if there exist relationship between the features or
when they are not independent.
Digital Article Identifier (DOI):
17
1291
Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Abstract: Nowadays predicting political risk level of country
has become a critical issue for investors who intend to achieve
accurate information concerning stability of the business
environments. Since, most of the times investors are layman and
nonprofessional IT personnel; this paper aims to propose a
framework named GECR in order to help nonexpert persons to
discover political risk stability across time based on the political
news and events.
To achieve this goal, the Bayesian Networks approach was
utilized for 186 political news of Pakistan as sample dataset.
Bayesian Networks as an artificial intelligence approach has been
employed in presented framework, since this is a powerful technique
that can be applied to model uncertain domains. The results showed
that our framework along with Bayesian Networks as decision
support tool, predicted the political risk level with a high degree of
accuracy.
Digital Article Identifier (DOI):
16
12342
A Bayesian Network Reliability Modeling for FlexRay Systems
Abstract: The increasing importance of FlexRay systems in
automotive domain inspires unceasingly relative researches. One
primary issue among researches is to verify the reliability of FlexRay
systems either from protocol aspect or from system design aspect.
However, research rarely discusses the effect of network topology on
the system reliability. In this paper, we will illustrate how to model
the reliability of FlexRay systems with various network topologies by
a well-known probabilistic reasoning technology, Bayesian Network.
In this illustration, we especially investigate the effectiveness of error
containment built in star topology and fault-tolerant midpoint
synchronization algorithm adopted in FlexRay communication
protocol. Through a FlexRay steer-by-wire case study, the influence
of different topologies on the failure probability of the FlexRay steerby-
wire system is demonstrated. The notable value of this research is
to show that the Bayesian Network inference is a powerful and
feasible method for the reliability assessment of FlexRay systems.
Digital Article Identifier (DOI):
15
4829
Web Personalization to Build Trust in E-Commerce: A Design Science Approach
Abstract: With the development of the Internet, E-commerce is
growing at an exponential rate, and lots of online stores are built up to
sell their goods online. A major factor influencing the successful
adoption of E-commerce is consumer-s trust. For new or unknown
Internet business, consumers- lack of trust has been cited as a major
barrier to its proliferation. As web sites provide key interface for
consumer use of E-Commerce, we investigate the design of web site to
build trust in E-Commerce from a design science approach. A
conceptual model is proposed in this paper to describe the ontology of
online transaction and human-computer interaction. Based on this
conceptual model, we provide a personalized webpage design
approach using Bayesian networks learning method. Experimental
evaluation are designed to show the effectiveness of web
personalization in improving consumer-s trust in new or unknown
online store.
Digital Article Identifier (DOI):
14
13501
Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period
Abstract: This paper presents the development of a Bayesian
belief network classifier for prediction of graft status and survival
period in renal transplantation using the patient profile information
prior to the transplantation. The objective was to explore feasibility
of developing a decision making tool for identifying the most suitable
recipient among the candidate pool members. The dataset was
compiled from the University of Toledo Medical Center Hospital
patients as reported to the United Network Organ Sharing, and had
1228 patient records for the period covering 1987 through 2009. The
Bayes net classifiers were developed using the Weka machine
learning software workbench. Two separate classifiers were induced
from the data set, one to predict the status of the graft as either failed
or living, and a second classifier to predict the graft survival period.
The classifier for graft status prediction performed very well with a
prediction accuracy of 97.8% and true positive values of 0.967 and
0.988 for the living and failed classes, respectively. The second
classifier to predict the graft survival period yielded a prediction
accuracy of 68.2% and a true positive rate of 0.85 for the class
representing those instances with kidneys failing during the first year
following transplantation. Simulation results indicated that it is
feasible to develop a successful Bayesian belief network classifier for
prediction of graft status, but not the graft survival period, using the
information in UNOS database.
Digital Article Identifier (DOI):
13
7161
An Integrative Bayesian Approach to Supporting the Prediction of Protein-Protein Interactions: A Case Study in Human Heart Failure
Abstract: Recent years have seen a growing trend towards the
integration of multiple information sources to support large-scale
prediction of protein-protein interaction (PPI) networks in model
organisms. Despite advances in computational approaches, the
combination of multiple “omic" datasets representing the same type
of data, e.g. different gene expression datasets, has not been
rigorously studied. Furthermore, there is a need to further investigate
the inference capability of powerful approaches, such as fullyconnected
Bayesian networks, in the context of the prediction of PPI
networks. This paper addresses these limitations by proposing a
Bayesian approach to integrate multiple datasets, some of which
encode the same type of “omic" data to support the identification of
PPI networks. The case study reported involved the combination of
three gene expression datasets relevant to human heart failure (HF).
In comparison with two traditional methods, Naive Bayesian and
maximum likelihood ratio approaches, the proposed technique can
accurately identify known PPI and can be applied to infer potentially
novel interactions.
Digital Article Identifier (DOI):
12
536
Use of Bayesian Network in Information Extraction from Unstructured Data Sources
Abstract: This paper applies Bayesian Networks to support
information extraction from unstructured, ungrammatical, and
incoherent data sources for semantic annotation. A tool has been
developed that combines ontologies, machine learning, and
information extraction and probabilistic reasoning techniques to
support the extraction process. Data acquisition is performed with the
aid of knowledge specified in the form of ontology. Due to the
variable size of information available on different data sources, it is
often the case that the extracted data contains missing values for
certain variables of interest. It is desirable in such situations to
predict the missing values. The methodology, presented in this paper,
first learns a Bayesian network from the training data and then uses it
to predict missing data and to resolve conflicts. Experiments have
been conducted to analyze the performance of the presented
methodology. The results look promising as the methodology
achieves high degree of precision and recall for information
extraction and reasonably good accuracy for predicting missing
values.
Digital Article Identifier (DOI):
11
2583
Behavioral Analysis of Team Members in Virtual Organization based on Trust Dimension and Learning
Abstract: Trust management and Reputation models are
becoming integral part of Internet based applications such as CSCW,
E-commerce and Grid Computing. Also the trust dimension is a
significant social structure and key to social relations within a
collaborative community. Collaborative Decision Making (CDM) is
a difficult task in the context of distributed environment (information
across different geographical locations) and multidisciplinary
decisions are involved such as Virtual Organization (VO). To aid
team decision making in VO, Decision Support System and social
network analysis approaches are integrated. In such situations social
learning helps an organization in terms of relationship, team
formation, partner selection etc. In this paper we focus on trust
learning. Trust learning is an important activity in terms of
information exchange, negotiation, collaboration and trust
assessment for cooperation among virtual team members. In this
paper we have proposed a reinforcement learning which enhances the
trust decision making capability of interacting agents during
collaboration in problem solving activity. Trust computational model
with learning that we present is adapted for best alternate selection of
new project in the organization. We verify our model in a multi-agent
simulation where the agents in the community learn to identify
trustworthy members, inconsistent behavior and conflicting behavior
of agents.
Digital Article Identifier (DOI):
10
15772
A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference
Abstract: Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.
Digital Article Identifier (DOI):
9
5888
Computational Intelligence Techniques and Agents- Technology in E-learning Environments
Abstract: In this contribution a newly developed e-learning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Digital Article Identifier (DOI):
8
8707
Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Abstract: Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Digital Article Identifier (DOI):
7
10745
Integrating E-learning Environments with Computational Intelligence Assessment Agents
Abstract: In this contribution an innovative platform is being
presented that integrates intelligent agents in legacy e-learning environments. It introduces the design and development of a scalable
and interoperable integration platform supporting various assessment agents for e-learning environments. The agents are implemented in
order to provide intelligent assessment services to computational intelligent techniques such as Bayesian Networks and Genetic
Algorithms. The utilization of new and emerging technologies like web services allows integrating the provided services to any web
based legacy e-learning environment.
Digital Article Identifier (DOI):
6
10278
Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments
Abstract: In this contribution an innovative platform is being
presented that integrates intelligent agents and evolutionary
computation techniques in legacy e-learning environments. It
introduces the design and development of a scalable and
interoperable integration platform supporting:
I) various assessment agents for e-learning environments,
II) a specific resource retrieval agent for the provision of
additional information from Internet sources matching the
needs and profile of the specific user and
III) a genetic algorithm designed to extract efficient information
(classifying rules) based on the students- answering input
data.
The agents are implemented in order to provide intelligent
assessment services based on computational intelligence techniques
such as Bayesian Networks and Genetic Algorithms.
The proposed Genetic Algorithm (GA) is used in order to extract
efficient information (classifying rules) based on the students-
answering input data. The idea of using a GA in order to fulfil this
difficult task came from the fact that GAs have been widely used in
applications including classification of unknown data.
The utilization of new and emerging technologies like web
services allows integrating the provided services to any web based
legacy e-learning environment.
Digital Article Identifier (DOI):
5
4603
Integrating Low and High Level Object Recognition Steps
Abstract: In pattern recognition applications the low level
segmentation and the high level object recognition are generally
considered as two separate steps. The paper presents a method that
bridges the gap between the low and the high level object
recognition. It is based on a Bayesian network representation and
network propagation algorithm. At the low level it uses hierarchical
structure of quadratic spline wavelet image bases. The method is
demonstrated for a simple circuit diagram component identification
problem.
Digital Article Identifier (DOI):
4
15602
First Studies of the Influence of Single Gene Perturbations on the Inference of Genetic Networks
Abstract: Inferring the network structure from time series data
is a hard problem, especially if the time series is short and noisy.
DNA microarray is a technology allowing to monitor the mRNA
concentration of thousands of genes simultaneously that produces
data of these characteristics. In this study we try to investigate the
influence of the experimental design on the quality of the result.
More precisely, we investigate the influence of two different types of
random single gene perturbations on the inference of genetic networks
from time series data. To obtain an objective quality measure for
this influence we simulate gene expression values with a biologically
plausible model of a known network structure. Within this framework
we study the influence of single gene knock-outs in opposite to
linearly controlled expression for single genes on the quality of the
infered network structure.
Digital Article Identifier (DOI):
3
6825
Influence of Noise on the Inference of Dynamic Bayesian Networks from Short Time Series
Abstract: In this paper we investigate the influence of external
noise on the inference of network structures. The purpose of our
simulations is to gain insights in the experimental design of microarray
experiments to infer, e.g., transcription regulatory networks
from microarray experiments. Here external noise means, that the
dynamics of the system under investigation, e.g., temporal changes of
mRNA concentration, is affected by measurement errors. Additionally
to external noise another problem occurs in the context of microarray
experiments. Practically, it is not possible to monitor the mRNA
concentration over an arbitrary long time period as demanded by the
statistical methods used to learn the underlying network structure. For
this reason, we use only short time series to make our simulations
more biologically plausible.
Digital Article Identifier (DOI):
2
15671
Integrating Low and High Level Object Recognition Steps by Probabilistic Networks
Abstract: In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.
Digital Article Identifier (DOI):
1
2484
Integrating Agents and Computational Intelligence Techniques in E-learning Environments
Abstract: In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.
Digital Article Identifier (DOI):