177
10011857
Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Abstract: The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.
Digital Article Identifier (DOI):
176
10011778
Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes
Abstract: Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.
Digital Article Identifier (DOI):
175
10011643
Association Rules Mining and NOSQL Oriented Document in Big Data
Abstract: Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.
Digital Article Identifier (DOI):
174
10011456
AniMoveMineR: Animal Behavior Exploratory Analysis Using Association Rules Mining
Abstract: Environmental changes and major natural disasters are
most prevalent in the world due to the damage that humanity has
caused to nature and these damages directly affect the lives of
animals. Thus, the study of animal behavior and their interactions
with the environment can provide knowledge that guides researchers
and public agencies in preservation and conservation actions.
Exploratory analysis of animal movement can determine the patterns
of animal behavior and with technological advances the ability of
animals to be tracked and, consequently, behavioral studies have
been expanded. There is a lot of research on animal movement and
behavior, but we note that a proposal that combines resources and
allows for exploratory analysis of animal movement and provide
statistical measures on individual animal behavior and its interaction
with the environment is missing. The contribution of this paper is
to present the framework AniMoveMineR, a unified solution that
aggregates trajectory analysis and data mining techniques to explore
animal movement data and provide a first step in responding questions
about the animal individual behavior and their interactions with other
animals over time and space. We evaluated the framework through the
use of monitored jaguar data in the city of Miranda Pantanal, Brazil,
in order to verify if the use of AniMoveMineR allows to identify the
interaction level between these jaguars. The results were positive and
provided indications about the individual behavior of jaguars and
about which jaguars have the highest or lowest correlation.
Digital Article Identifier (DOI):
173
10011026
Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Abstract: The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.
Digital Article Identifier (DOI):
172
10010963
Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining
Abstract: In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which cover the variety of figure proportions in both height and girth. 3,000 data have been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from the some states of India to produce the sizing system suitable for clothing manufacture and retailing. The data are used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from the large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.
Digital Article Identifier (DOI):
171
10010895
A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition
Abstract: This paper presents an approach for easy creation and
classification of institutional risk profiles supporting endangerment
analysis of file formats. The main contribution of this work is the
employment of data mining techniques to support set up of the most
important risk factors. Subsequently, risk profiles employ risk factors
classifier and associated configurations to support digital preservation
experts with a semi-automatic estimation of endangerment group
for file format risk profiles. Our goal is to make use of an expert
knowledge base, accuired through a digital preservation survey
in order to detect preservation risks for a particular institution.
Another contribution is support for visualisation of risk factors for
a requried dimension for analysis. Using the naive Bayes method,
the decision support system recommends to an expert the matching
risk profile group for the previously selected institutional risk profile.
The proposed methods improve the visibility of risk factor values
and the quality of a digital preservation process. The presented
approach is designed to facilitate decision making for the preservation
of digital content in libraries and archives using domain expert
knowledge and values of file format risk profiles. To facilitate
decision-making, the aggregated information about the risk factors
is presented as a multidimensional vector. The goal is to visualise
particular dimensions of this vector for analysis by an expert and
to define its profile group. The sample risk profile calculation and
the visualisation of some risk factor dimensions is presented in the
evaluation section.
Digital Article Identifier (DOI):
170
10010656
From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Abstract: Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Digital Article Identifier (DOI):
169
10010548
Using Textual Pre-Processing and Text Mining to Create Semantic Links
Abstract: This article offers a approach to the automatic discovery
of semantic concepts and links in the domain of Oil Exploration
and Production (E&P). Machine learning methods combined with
textual pre-processing techniques were used to detect local patterns in
texts and, thus, generate new concepts and new semantic links. Even
using more specific vocabularies within the oil domain, our approach
has achieved satisfactory results, suggesting that the proposal can
be applied in other domains and languages, requiring only minor
adjustments.
Digital Article Identifier (DOI):
168
10009340
Road Traffic Accidents Analysis in Mexico City through Crowdsourcing Data and Data Mining Techniques
Abstract: Road traffic accidents are among the principal causes of
traffic congestion, causing human losses, damages to health and the
environment, economic losses and material damages. Studies about
traditional road traffic accidents in urban zones represents very high
inversion of time and money, additionally, the result are not current.
However, nowadays in many countries, the crowdsourced GPS based
traffic and navigation apps have emerged as an important source
of information to low cost to studies of road traffic accidents and
urban congestion caused by them. In this article we identified the
zones, roads and specific time in the CDMX in which the largest
number of road traffic accidents are concentrated during 2016. We
built a database compiling information obtained from the social
network known as Waze. The methodology employed was Discovery
of knowledge in the database (KDD) for the discovery of patterns
in the accidents reports. Furthermore, using data mining techniques
with the help of Weka. The selected algorithms was the Maximization
of Expectations (EM) to obtain the number ideal of clusters for the
data and k-means as a grouping method. Finally, the results were
visualized with the Geographic Information System QGIS.
Digital Article Identifier (DOI):
167
10009173
An Improved K-Means Algorithm for Gene Expression Data Clustering
Abstract: Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Digital Article Identifier (DOI):
166
10009142
CoP-Networks: Virtual Spaces for New Faculty’s Professional Development in the 21st Higher Education
Abstract: The 21st century higher education and globalization challenge new faculty members to build effective professional networks and partnership with industry in order to accelerate their growth and success. This creates the need for community of practice (CoP)-oriented development approaches that focus on cognitive apprenticeship while considering individual predisposition and future career needs. This work adopts data mining, clustering analysis, and social networking technologies to present the CoP-Network as a virtual space that connects together similar career-aspiration individuals who are socially influenced to join and engage in a process for domain-related knowledge and practice acquisitions. The CoP-Network model can be integrated into higher education to extend traditional graduate and professional development programs.
Digital Article Identifier (DOI):
165
10008694
Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Abstract: Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.
Digital Article Identifier (DOI):
164
10008434
Implementation of an IoT Sensor Data Collection and Analysis Library
Abstract: Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.
Digital Article Identifier (DOI):
163
10007940
Linguistic Summarization of Structured Patent Data
Abstract: Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.
Digital Article Identifier (DOI):
162
10007682
Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website
Abstract: Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.
Digital Article Identifier (DOI):
161
10008404
Knowledge Discovery and Data Mining Techniques in Textile Industry
Abstract: This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.
Digital Article Identifier (DOI):
160
10007185
Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Abstract: Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.
Digital Article Identifier (DOI):
159
10007311
CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm
Abstract: The biological function of an RNA molecule depends
on its structure. The objective of the alignment is finding the
homology between two or more RNA secondary structures. Knowing
the common functionalities between two RNA structures allows
a better understanding and a discovery of other relationships
between them. Besides, identifying non-coding RNAs -that is not
translated into a protein- is a popular application in which RNA
structural alignment is the first step A few methods for RNA
structure-to-structure alignment have been developed. Most of these
methods are partial structure-to-structure, sequence-to-structure, or
structure-to-sequence alignment. Less attention is given in the
literature to the use of efficient RNA structure representation and the
structure-to-structure alignment methods are lacking. In this paper,
we introduce an O(N2) Component-based Pairwise RNA Structure
Alignment (CompPSA) algorithm, where structures are given as
a component-based representation and where N is the maximum
number of components in the two structures. The proposed algorithm
compares the two RNA secondary structures based on their weighted
component features rather than on their base-pair details. Extensive
experiments are conducted illustrating the efficiency of the CompPSA
algorithm when compared to other approaches and on different real
and simulated datasets. The CompPSA algorithm shows an accurate
similarity measure between components. The algorithm gives the
flexibility for the user to align the two RNA structures based on
their weighted features (position, full length, and/or stem length).
Moreover, the algorithm proves scalability and efficiency in time and
memory performance.
Digital Article Identifier (DOI):
158
10008236
A Study on the Nostalgia Contents Analysis of Hometown Alumni in the Online Community
Abstract: This study aims to analyze the text terms posted on an online community of people from the same hometown and to understand the topic and trend of nostalgia composed online. For this purpose, this study collected 144 writings which the natives of Yeongjong Island, Incheon, South-Korea have posted on an online community. And it analyzed association relations. As a result, online community texts means that just defining nostalgia as ‘a mind longing for hometown’ is not an enough explanation. Second, texts composed online have abstractness rather than persons’ individual stories. This study figured out the relationship that had the most critical and closest mutual association among the terms that constituted nostalgia through literature research and association rule concerning nostalgia. The result of this study has a characteristic that it summed up the core terms and emotions related to nostalgia.
Digital Article Identifier (DOI):
157
10006260
Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Abstract: To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Digital Article Identifier (DOI):
156
10006395
An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Abstract: Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.
Digital Article Identifier (DOI):
155
10006636
Application of Data Mining Techniques for Tourism Knowledge Discovery
Abstract: Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Digital Article Identifier (DOI):
154
10005688
Arabic Light Stemmer for Better Search Accuracy
Abstract: Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.
Digital Article Identifier (DOI):
153
10005492
Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design
Abstract: Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.
Digital Article Identifier (DOI):
152
10005377
Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Abstract: Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.
Digital Article Identifier (DOI):
151
10004567
Evaluation of Ensemble Classifiers for Intrusion Detection
Abstract: One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.
Digital Article Identifier (DOI):
150
10004765
Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Abstract: The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.
Digital Article Identifier (DOI):
149
10004280
Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Abstract: In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.
Digital Article Identifier (DOI):
148
10004544
Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Abstract: Classification is an important data mining technique
and could be used as data filtering in artificial intelligence. The
broad application of classification for all kind of data leads to be
used in nearly every field of our modern life. Classification helps us
to put together different items according to the feature items decided
as interesting and useful. In this paper, we compare two
classification methods Naïve Bayes and ADTree use to detect spam
e-mail. This choice is motivated by the fact that Naive Bayes
algorithm is based on probability calculus while ADTree algorithm is
based on decision tree. The parameter settings of the above
classifiers use the maximization of true positive rate and
minimization of false positive rate. The experiment results present
classification accuracy and cost analysis in view of optimal classifier
choice for Spam Detection. It is point out the number of attributes to
obtain a tradeoff between number of them and the classification
accuracy.
Digital Article Identifier (DOI):