Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 331

331
10011762
Parametric Approach for Reserve Liability Estimate in Mortgage Insurance
Abstract:

Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.

330
10011607
Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

329
10011622
The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology
Abstract:

Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).

328
10011367
Methodology of the Turkey’s National Geographic Information System Integration Project
Abstract:

With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.

327
10011399
NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.
326
10011314
Machine Learning Techniques in Bank Credit Analysis
Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

325
10011225
Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images
Authors:
Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

324
10011109
A Decision Tree Approach to Estimate Permanent Residents Using Remote Sensing Data in Lebanese Municipalities
Abstract:

Population estimation using Geographic Information System (GIS) and remote sensing faces many obstacles such as the determination of permanent residents. A permanent resident is an individual who stays and works during all four seasons in his village. So, all those who move towards other cities or villages are excluded from this category. The aim of this study is to identify the factors affecting the percentage of permanent residents in a village and to determine the attributed weight to each factor. To do so, six factors have been chosen (slope, precipitation, temperature, number of services, time to Central Business District (CBD) and the proximity to conflict zones) and each one of those factors has been evaluated using one of the following data: the contour lines map of 50 m, the precipitation map, four temperature maps and data collected through surveys. The weighting procedure has been done using decision tree method. As a result of this procedure, temperature (50.8%) and percentage of precipitation (46.5%) are the most influencing factors.

323
10011110
Urban Areas Management in Developing Countries: Analysis of the Urban Areas Crossed with Risk of Storm Water Drains, Aswan-Egypt
Abstract:

One of the most risky areas in Aswan is Abouelreesh, which is suffering from flood disasters, as heavy deluge inundates urban areas causing considerable damage to buildings and infrastructure. Moreover, the main problem was the urban sprawl towards this risky area. This paper aims to identify the urban areas located in the risk areas prone to flash floods. Analyzing this phenomenon needs a lot of data to ensure satisfactory results; however, in this case the official data and field data were limited, and therefore, free sources of satellite data were used. This paper used ArcGIS tools to obtain the storm water drains network by analyzing DEM files. Additionally, historical imagery in Google Earth was studied to determine the age of each building. The last step was to overlay the urban area layer and the storm water drains layer to identify the vulnerable areas. The results of this study would be helpful to urban planners and government officials to make the disasters risk estimation and develop primary plans to recover the risky area, especially urban areas located in torrents.

322
10011139
Geographic Information Systems as a Tool to Support the Sustainable Development Goals
Abstract:

Geographic Information Systems (GIS) is a multipurpose computer-based tool that provides a sophisticated ability to map and analyze data on different spatial layers. However, GIS is far more easily applied in some policy areas than others. This paper seeks to determine the areas of sustainable development, including environmental, economic, and social dimensions, where GIS has been used to date to support efforts to implement the United Nations Sustainable Development Goals (SDGs), and to discuss potential areas where it might be used more. Based on an extensive analysis of published literature, we ranked the SDGs according to how frequently GIS has been used to study related policy. We found that SDG#15 “Life on Land” is most often addressed with GIS, following by SDG#11 “Sustainable Cities and Communities”, and SDG#13 “Climate Action”. On the other hand, we determined that SDG#2 “Zero Hunger”, SDG#8 “Decent Work and Economic Growth”, and SDG#16 “Peace, Justice, and Strong Institutions” are least addressed with GIS. The paper outlines some specific ways that GIS might be applied to the SDGs least linked to this tool currently.

321
10011056
Logistic Model Tree and Expectation-Maximization for Pollen Recognition and Grouping
Abstract:

Palynology is a field of interest for many disciplines. It has multiple applications such as chronological dating, climatology, allergy treatment, and even honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time-consuming task that requires the intervention of experts in the field, which is becoming increasingly rare due to economic and social conditions. So, the automation of this task is a necessity. Pollen slides analysis is mainly a visual process as it is carried out with the naked eye. That is the reason why a primary method to automate palynology is the use of digital image processing. This method presents the lowest cost and has relatively good accuracy in pollen retrieval. In this work, we propose a system combining recognition and grouping of pollen. It consists of using a Logistic Model Tree to classify pollen already known by the proposed system while detecting any unknown species. Then, the unknown pollen species are divided using a cluster-based approach. Success rates for the recognition of known species have been achieved, and automated clustering seems to be a promising approach.

320
10010973
The Necessity of Urban Boundaries in Planning Legislation: A Case Study in Bilecik, Turkey
Abstract:

In Turkey, while urban area boundaries are enlarged by making decisions on investment areas in cities, development plans are made according to government decisions, rather than scientific criteria. Even environment protection laws state that “if public interest is at stake”, areas under mandatory protection can be transformed into investment areas. This leads to destruction of valuable agricultural lands. Paper demonstrates loss of agricultural lands by superimposing plans, Suitability of the Lands for Agricultural Use and Google Earth Images in an exemplary settlement, and expresses that urban area boundaries should be included in legislation as an official boundary for all settlements.

319
10010907
Framework and Characterization of Physical Internet
Abstract:
Over the last years, a new paradigm known as Physical Internet has been developed, and studied in logistics management. The purpose of this global and open system is to deal with logistics grand challenge by setting up an efficient and sustainable Logistics Web. The purpose of this paper is to review scientific articles dedicated to Physical Internet topic, and to provide a clustering strategy enabling to classify the literature on the Physical Internet, to follow its evolution, as well as to criticize it. The classification is based on three factors: Logistics Web, organization, and resources. Several papers about Physical Internet have been classified and analyzed along the Logistics Web, resources and organization views at a strategic, tactical and operational level, respectively. A developed cluster analysis shows which topics of the Physical Internet that are the less covered actually. Future researches are outlined for these topics.
318
10010833
Current Status of Industry 4.0 in Material Handling Automation and In-house Logistics
Abstract:
In the last decade, a new industrial revolution seems to be emerging, supported -once again- by the rapid advancements of Information Technology in the areas of Machine-to-Machine (M2M) communication permitting large numbers of intelligent devices, e.g. sensors to communicate with each other and take decisions without any or minimum indirect human intervention. The advent of these technologies have triggered the emergence of a new category of hybrid (cyber-physical) manufacturing systems, combining advanced manufacturing techniques with innovative M2M applications based on the Internet of Things (IoT), under the umbrella term Industry 4.0. Even though the topic of Industry 4.0 has attracted much attention during the last few years, the attempts of providing a systematic literature review of the subject are scarce. In this paper, we present the authors’ initial study of the field with a special focus on the use and applications of Industry 4.0 principles in material handling automations and in-house logistics. Research shows that despite the vivid discussion and attractiveness of the subject, there are still many challenges and issues that have to be addressed before Industry 4.0 becomes standardized and widely applicable.
317
10010840
Synergistic Impacts and Optimization of Gas Flow Rate, Concentration of CO2, and Light Intensity on CO2 Biofixation in Wastewater Medium by Chlorella vulgaris
Abstract:

The synergistic impact and optimization of gas flow rate, concentration of CO2, and light intensity on CO2 biofixation rate were investigated using wastewater as a medium to cultivate Chlorella vulgaris under different conditions (gas flow rate 1-8 L/min), CO2 concentration (0.03-7%), and light intensity (150-400 µmol/m2.s)). Response Surface Methodology and Box-Behnken experimental Design were applied to find optimum values for gas flow rate, CO2 concentration, and light intensity. The optimum values of the three independent variables (gas flow rate, concentration of CO2, and light intensity) and desirability were 7.5 L/min, 3.5%, and 400 µmol/m2.s, and 0.904, respectively. The highest amount of biomass produced and CO2 biofixation rate at optimum conditions were 5.7 g/L, 1.23 gL-1d-1, respectively. The synergistic effect between gas flow rate and concentration of CO2, and between gas flow rate and light intensity was significant on the three responses, while the effect between CO2 concentration and light intensity was less significant on CO2 biofixation rate. The results of this study could be highly helpful when using microalgae for CO2 biofixation in wastewater treatment.

316
10010842
An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

315
10010460
Research of the Factors Affecting the Administrative Capacity of Enterprises in the Logistic Sector of Bulgaria
Abstract:

The human factor plays a major role in boosting the competitive capacity of logistic enterprises. This is of particular importance when it comes to logistic companies. On the one hand they should be strictly compliant with legislation; on the other hand, they should be competitive in terms of pricing and of delivery timelines. Moreover, their policies should allow them to be as flexible as possible. All these circumstances are reason for very serious challenges for the qualification, motivation and experience of the human resources, working in logistic companies or in logistic departments of trade and industrial enterprises. The geographic place of Bulgaria puts it in position of a country with some specific competitive advantages in the goods transport from Europe to Asia and back. Along with it, there is a number of logistic companies, that operate in this sphere in Bulgaria. In the current paper, the authors aim to establish the condition of the administrative capacity and human resources in the logistic companies and logistic departments of trade and industrial companies in Bulgaria in order to propose some guidelines for improving of their effectiveness. Due to independent empirical research, conducted in Bulgarian logistic, trade and industrial enterprises, the authors investigate both the impact degree and the interdependence of various factors that characterize the administrative capacity. The study is conducted with a prepared questionnaire, in format of direct interview with the respondents. The volume of the poll is 50 respondents, representatives of: general managers of industrial or trade enterprises; logistic managers of industrial or trade enterprises; general managers of forwarding companies – either with own or with hired transport; experts from Bulgarian association of logistics; logistic lobbyist and scientists of the relevant area. The data are gathered for 3 months, then arranged by a specialized software program and analyzed by preset criteria. Based on the results of this methodological toolbox, it can be claimed that there is a correlation between the individual criteria. Also, a commitment between the administrative capacity and other factors that determine the competitiveness of the studied companies is established. In this paper, the authors present results of the empirical research that concerns the number and the workload in the logistic departments of the enterprises. Also, what is commented is the experience, related to logistic processes management and human resources competence. Moreover, the overload level of the logistic specialists is analyzed as one of the main threats for making mistakes and losing clients. The paper stands behind the thesis that there is indispensability of forming an effective and efficient administrative capacity, based on the number, qualification, experience and motivation of the staff in the logistic companies. The paper ends with recommendations about the qualification and experience of the specialists in logistic departments; providing effective and efficient administrative capacity in the logistic departments; interdependence of the human factor and the other factors that influence the enterprise competitiveness.

314
10010321
Reverse Logistics in Clothing Recycling: A Case Study in Chengdu
Authors:
Abstract:

Clothing recycling bin is a traditional way to collect textile waste in many areas. In the clothing recycling business, the transportation cost normally takes over 50% of total costs. This case gives a good way to reduce transportation cost by reverse logistics system. In this reverse logistics system, there are offline strategic alliance partners, such as transport firms, convenience stores, laundries, and post office which are integrated onto the mobile APP. Offline strategic alliance partners provide the service of textile waste collection, and transportation by their vacant vehicles return journey from convenience stores, laundries and post offices to sorting centers. The results of the case study provide the strategic alliance with a valuable and light - asset business model by using the logistics of offline memberships. The company in this case just focuses on textile waste sorting, reuse, recycling etc. The research method of this paper is a case study of a clothing recycling company in Chengdu by field research and interview; the analysis is based on the theory of the reverse logistics system.

313
10010395
Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco
Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

312
10010231
Current Situation of Maritime Transport and Logistics in Myanmar
Abstract:

There are many modes of transport. Among them, maritime transport is a major transportation mode of international trade. In the Republic of the Union of Myanmar (Burma), water transportation served as one of the most important modes of transport for country's exports and imports. Getting the accurate information and data-gathering activity are the most important aspects for any study field. Therefore, in this research, a historical review of the development of ports in Myanmar and how they have changed had been carried out. All the relevant literature and documents have also been reviewed, studied, and organized. The sources of collected data are from reports, journals, internet, as well as from the publications of authorized organizations and international associations. To get better understanding about real situation of maritime transport and logistics in Myanmar; current condition of existing ports, expansion and on-going projects, and future port development plans are described successively. Hence, the main purpose of this study is to build up a comprehensive picture of maritime transport and logistics, in addition to border trade within ASEAN and Myanmar. It will help for academic researchers, decision makers, and stakeholders for national planning as well as for the local and foreign investors to recognize current situation of maritime transport and logistics in Myanmar.

311
10010157
Effects of Increased Green Surface on a Densely Built Urban Fabric: The Case of Budapest
Abstract:

Urban greenery has multiple positive effects both on the city and its residents. Apart from the visual advantages, it changes the micro-climate by cooling and shading, also increasing vapor and oxygen, reducing dust and carbon-dioxide content at the same time. The above are all critical factors of livability of an urban fabric. Unfortunately, in a dense, historical district there are restricted possibilities to build green surfaces. The present study collects and systemizes the applicable green solutions in the case of a historical downtown district of Budapest. The study contains a GIS-based measurement of the eligible surfaces for greenery, and also calculates the potential of oxygen production, carbon-dioxide reduction and cooling effect of an increased green surface.  It can be concluded that increasing the green surface has measurable effects on a densely built urban fabric, including air quality, micro-climate and other environmental factors.

310
10010173
Calculation of Water Economy Balance for Water Management
Abstract:

Fresh water deficit is one of the most important global problems today. It must be taken into consideration that in the nearest future fresh water crisis will become even more acute owing to the global climate warming and fast desertification processes in the world. Georgia is rich in water resources, but there are disbalance between the eastern and western parts of the country. The goal of the study is to integrate the recent mechanisms compatible with European standards into Georgian water resources management system on the basis of GIS. Moreover, to draw up water economy balance for the purpose of proper determination of water consumption priorities that will be an exchange ratio of water resources and water consumption of the concrete territory. For study region was choose south-eastern part of country, Kvemo kartli Region. This is typical agrarian region, tends to the desertification. The water supply of the region was assessed on the basis of water economy balance, which was first time calculated for this region.

309
10009976
Timescape-Based Panoramic View for Historic Landmarks
Abstract:

Providing a panoramic view of famous landmarks around the world offers artistic and historic value for historians, tourists, and researchers. Exploring the history of famous landmarks by presenting a comprehensive view of a temporal panorama merged with geographical and historical information presents a unique challenge of dealing with images that span a long period, from the 1800’s up to the present. This work presents the concept of temporal panorama through a timeline display of aligned historic and modern images for many famous landmarks. Utilization of this panorama requires a collection of hundreds of thousands of landmark images from the Internet comprised of historic images and modern images of the digital age. These images have to be classified for subset selection to keep the more suitable images that chronologically document a landmark’s history. Processing of historic images captured using older analog technology under various different capturing conditions represents a big challenge when they have to be used with modern digital images. Successful processing of historic images to prepare them for next steps of temporal panorama creation represents an active contribution in cultural heritage preservation through the fulfillment of one of UNESCO goals in preservation and displaying famous worldwide landmarks.

308
10009899
Dimension Free Rigid Point Set Registration in Linear Time
Authors:
Abstract:
This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.
307
10009907
Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software
Abstract:

Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.

306
10009805
Identifying Neighborhoods at Potential Risk of Food Insecurity in Rural British Columbia
Abstract:

Substantial research has indicated that socioeconomic and demographic characteristics’ of neighborhoods are strong determinants of food security. The aim of this study was to develop a Food Insecurity Neighborhood Index (FINI) based on the associated socioeconomic and demographic variables to identify the areas at potential risk of food insecurity in rural British Columbia (BC). Principle Component Analysis (PCA) technique was used to calculate the FINI for each rural Dissemination Area (DA) using the food security determinant variables from Canadian Census data. Using ArcGIS, the neighborhoods with the top quartile FINI values were classified as food insecure. The results of this study indicated that the most food insecure neighborhood with the highest FINI value of 99.1 was in the Bulkley-Nechako (central BC) area whereas the lowest FINI with the value of 2.97 was for a rural neighborhood in the Cowichan Valley area. In total, 98.049 (19%) of the rural population of British Columbians reside in high food insecure areas. Moreover, the distribution of food insecure neighborhoods was found to be strongly dependent on the degree of rurality in BC. In conclusion, the cluster of food insecure neighbourhoods was more pronounced in Central Coast, Mount Wadington, Peace River, Kootenay Boundary, and the Alberni-Clayoqout Regional Districts.

305
10009675
The Study of Biodiversity of Thirty Two Families of Useful Plants Existed in Georgia
Abstract:

The article deals with the database, which was created by the authors, related to biodiversity of some families of useful plants (medicinal, aromatic, spices, dye and poisonous) existing in Georgia considering important taxonomy. Our country is also rich with endemic genera. The results of monitoring of the phytogenetic resources to reveal perspective species and situation of endemic species and resources are also discussed in this paper. To get some new medicinal and preventive treatments using plant raw material in the phytomedicine, phytocosmetics and phytoculinary, the unique phytogenetic resources should be protected because the application of useful plants is becoming irreversible. This can be observed along with intensification and sustainable use of ethnobotanical traditions and promotion of phytoproduction based on the international requirements on biodiversity (Convention on Biological Diversity - CBD). Though Georgian phytopharmacy has the centuries-old traditions, today it is becoming the main concern.

304
10009679
Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric
Abstract:

Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.

303
10009303
Case Study of the Roma Tomato Distribution Chain: A Dynamic Interface for an Agricultural Enterprise in Mexico
Abstract:

From August to December of 2016, a diagnostic and strategic planning study was carried out on the supply chain of the company Agropecuaria GABO S.A. de C.V. The final product of the study was the development of the strategic plan and a project portfolio to meet the demands of the three links in the supply chain of the Roma tomato exported annually to the United States of America. In this project, the strategic objective of ensuring the proper handling of the product was selected and one of the goals associated with this was the employment of quantitative methods to support decision making. Considering the antecedents, the objective of this case study was to develop a model to analyze the behavioral dynamics in the distribution chain, from the logistics of storage and shipment of Roma tomato in 81-case pallets (11.5 kg per case), to the two pre-cooling rooms and eventual loading onto transports, seeking to reduce the bottleneck and the associated costs by means of a dynamic interface. The methodology used was that of system dynamics, considering four phases that were adapted to the purpose of the study: 1) the conceptualization phase; 2) the formulation phase; 3) the evaluation phase; and 4) the communication phase. The main practical conclusions lead to the possibility of reducing both the bottlenecks in the cooling rooms and the costs by simulating scenarios and modifying certain policies. Furthermore, the creation of the dynamic interface between the model and the stakeholders was achieved by generating interaction with buttons and simple instructions that allow making modifications and observing diverse behaviors.

302
10009296
A Taxonomy Proposal on Criterion Structure for Evaluating Freight Village Concepts in Early-Stage Design Projects
Abstract:
The early-stage design and development projects for the freight village initiatives require a comprehensive analysis of both qualitative and quantitative data. Considering the literature review on structural and operational management requirements, this study proposed an original taxonomy on criterion structure to assess freight village conceptualization. The potential challenges and uncertainties of the developed taxonomy are extended. Besides requirement analysis, this study is also expected to contribute to forthcoming research on benchmarking of freight villages in different regions. The methodology used in this research is a systematic review on several articles as per their modelling approaches, sustainability, entities and decisions made together with the uncertainties and features of their models taken into consideration. The major findings of the study that are the categories for assessing the projects attributes on their environmental, socio-economical, accessibility and location aspects.
Vol:15 No:02 2021Vol:15 No:01 2021
Vol:14 No:12 2020Vol:14 No:11 2020Vol:14 No:10 2020Vol:14 No:09 2020Vol:14 No:08 2020Vol:14 No:07 2020Vol:14 No:06 2020Vol:14 No:05 2020Vol:14 No:04 2020Vol:14 No:03 2020Vol:14 No:02 2020Vol:14 No:01 2020
Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007