31
10008605
Scorbot-ER 4U Using Forward Kinematics Modelling and Analysis
Abstract: Robotic arm manipulators are widely used to accomplish many kinds of tasks. SCORBOT-ER 4u is a 5-degree of freedom (DOF) vertical articulated educational robotic arm, and all joints are revolute. It is specifically designed to perform pick and place task with its gripper. The pick and place task consists of consideration of the end effector coordinate of the robotic arm and the desired position coordinate in its workspace. This paper describes about forward kinematics modeling and analysis of the robotic end effector motion through joint space. The kinematics problems are defined by the transformation from the Cartesian space to the joint space. Denavit-Hartenberg (D-H) model is used in order to model the robotic links and joints with 4x4 homogeneous matrix. The forward kinematics model is also developed and simulated in MATLAB. The mathematical model is validated by using robotic toolbox in MATLAB. By using this method, it may be applicable to get the end effector coordinate of this robotic arm and other similar types to this arm. The software development of SCORBOT-ER 4u is also described here. PC-and EtherCAT based control technology from BECKHOFF is used to control the arm to express the pick and place task.
Digital Article Identifier (DOI):
30
10006973
MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation
Abstract: This paper presents a home-based robot-rehabilitation
instrument, called ”MAGNI Dynamics”, that utilized a vision-based
kinematic/dynamic module and an adaptive haptic feedback
controller. The system is expected to provide personalized
rehabilitation by adjusting its resistive and supportive behavior
according to a fuzzy intelligence controller that acts as an inference
system, which correlates the user’s performance to different stiffness
factors. The vision module uses the Kinect’s skeletal tracking to
monitor the user’s effort in an unobtrusive and safe way, by estimating
the torque that affects the user’s arm. The system’s torque estimations
are justified by capturing electromyographic data from primitive
hand motions (Shoulder Abduction and Shoulder Forward Flexion).
Moreover, we present and analyze how the Barrett WAM generates
a force-field with a haptic controller to support or challenge the
users. Experiments show that by shifting the proportional value,
that corresponds to different stiffness factors of the haptic path, can
potentially help the user to improve his/her motor skills. Finally,
potential areas for future research are discussed, that address how
a rehabilitation robotic framework may include multisensing data, to
improve the user’s recovery process.
Digital Article Identifier (DOI):
29
10006472
Technological Development and Implementation of a Robotic Arm Motioned by Programmable Logic Controller
Abstract: The robot manipulator is an equipment that stands out for two reasons: Firstly because of its characteristics of movement and reprogramming, resembling the arm; secondly, by adding several areas of knowledge of science and engineering. The present work shows the development of the prototype of a robotic manipulator driven by a Programmable Logic Controller (PLC), having two degrees of freedom, which allows the movement and displacement of mechanical parts, tools, and objects in general of small size, through an electronic system. The aim is to study direct and inverse kinematics of the robotic manipulator to describe the translation and rotation between two adjacent links of the robot through the Denavit-Hartenberg parameters. Currently, due to the many resources that microcomputer systems offer us, robotics is going through a period of continuous growth that will allow, in a short time, the development of intelligent robots with the capacity to perform operations that require flexibility, speed and precision.
Digital Article Identifier (DOI):
28
10005652
Movement Optimization of Robotic Arm Movement Using Soft Computing
Abstract: Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.
Digital Article Identifier (DOI):
27
10004552
Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method
Abstract: This paper presents the trajectory tracking control of a
spatial redundant hybrid manipulator. This manipulator consists of
two parallel manipulators which are a variable geometry truss (VGT)
module. In fact, each VGT module with 3-degress of freedom (DOF)
is a planar parallel manipulator and their operational planes of these
VGT modules are arranged to be orthogonal to each other. Also, the
manipulator contains a twist motion part attached to the top of the
second VGT module to supply the missing orientation of the endeffector.
These three modules constitute totally 7-DOF hybrid
(parallel-parallel) redundant spatial manipulator. The forward
kinematics equations of this manipulator are obtained, then,
according to these equations, the inverse kinematics is solved based
on an optimization with the joint limit avoidance. The dynamic
equations are formed by using virtual work method. In order to test
the performance of the redundant manipulator and the controllers
presented, two different desired trajectories are followed by using the
computed force control method and a switching control method. The
switching control method is combined with the computed force
control method and genetic algorithm. In the switching control
method, the genetic algorithm is only used for fine tuning in the
compensation of the trajectory tracking errors.
Digital Article Identifier (DOI):
26
10003682
Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity
Abstract: During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.
Digital Article Identifier (DOI):
25
10001380
Design of a 4-DOF Robot Manipulator with Optimized Algorithm for Inverse Kinematics
Abstract: This paper shows in detail the mathematical model of
direct and inverse kinematics for a robot manipulator (welding type)
with four degrees of freedom. Using the D-H parameters, screw
theory, numerical, geometric and interpolation methods, the
theoretical and practical values of the position of robot were
determined using an optimized algorithm for inverse kinematics
obtaining the values of the particular joints in order to determine the
virtual paths in a relatively short time.
Digital Article Identifier (DOI):
24
10000325
Measurement and Analysis of Human Hand Kinematics
Abstract: Measurements and quantitative analysis of kinematic
parameters of human hand movements have an important role in
different areas such as hand function rehabilitation, modeling of
multi-digits robotic hands, and the development of machine-man
interfaces. In this paper the assessment and evaluation of the reachto-
grasp movement by using computerized and robot-assisted method
is described. Experiment involved the measurements of hand
positions of seven healthy subjects during grasping three objects of
different shapes and sizes. Results showed that three dominant phases
of reach-to-grasp movements could be clearly identified.
Digital Article Identifier (DOI):
23
10000107
Individual Actuators of a Car-Like Robot with Back Trailer
Abstract: This paper presents the hardware implemented and
validation for a special system to assist the unprofessional users of
car with back trailers. The system consists of two platforms; the front
car platform (C) and the trailer platform (T). The main objective is to
control the Trailer platform using the actuators found in the front
platform (c). The mobility of the platform (C) is investigated and
inverse and forward kinematics model is obtained for both platforms
(C) and (T).The system is simulated using Matlab M-file and the
simulation examples results illustrated the system performance. The
system is constructed with a hardware setup for the front and trailer
platform. The hardware experimental results and the simulated
examples outputs showed the validation of the hardware setup.
Digital Article Identifier (DOI):
22
9999626
Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks
Abstract: Kinematic data wisely correlate vector quantities in
space to scalar parameters in time to assess the degree of symmetry
between the intact limb and the amputated limb with respect to a
normal model derived from the gait of control group participants.
Furthermore, these particular data allow a doctor to preliminarily
evaluate the usefulness of a certain rehabilitation therapy.
Kinetic curves allow the analysis of ground reaction forces (GRFs)
to assess the appropriateness of human motion.
Electromyography (EMG) allows the analysis of the fundamental
lower limb force contributions to quantify the level of gait
asymmetry. However, the use of this technological tool is expensive
and requires patient’s hospitalization. This research work suggests
overcoming the above limitations by applying artificial neural
networks.
Digital Article Identifier (DOI):
21
9996683
The Biomechanics of Cycling with a Transtibial Prosthesis: A Case Study of a Professional Cyclist
Abstract: The article deals with biomechanics of cyclist with unilateral transtibial amputation. Transtibial amputation completely removes ankle and part of muscles of a lower leg which are responsible for production of force during pedaling and causes significant geometric and power asymmetry between the limbs during cycling movement. The primary goal of this work is to assess the effects of length adjustment of the crank on the kinematics and muscle activity of cyclist. The paper presents experimental work, which aims to find a suitable ratio of the length of kinematic components to improve overall athletic performance. The study presents the results of the kinematic analysis of the cycling movement with different crank length realized by tracking camera system together with the results of muscle activity measurements captured by electromyography and measurement of forces in the cranks by strain gauges.
Digital Article Identifier (DOI):
20
9997090
Kinematic Analysis and Software Development of a Seven Degree of Freedom Inspection Robot
Abstract: Robots are booming as an essential substituent in the field of inspection. In hazardous environments like nuclear waste disposal, robots are really a necessitate one. In a view to meet such demands, this paper presents the seven degree of freedom articulated inspection robot. To design such a robot the kinematic analysis of seven Degree of freedom robot which can inspect the hazardous nuclear waste storage tanks is done. The effective utilization of universal joints for arms and screw jack mechanisms at the base gives the higher order of degree of freedom to the newly designed robot. The analytical method of deriving the manipulator forward as well as inverse kinematics is explained elaborately using the Denavit-Hartenberg Approach for the purpose of calculating the robot joints, links and end-effector parameters. The comparison of the geometric and the analytical approach is stated. The self-developed kinematic model gives the accurate positions of the end effector. The Graphical User Interface (GUI) is developed in Visual Basic language for the manipulation of kinematic results easily. This software gives the expected position of the end-effector accurately at short time compared to manual manipulations.
Digital Article Identifier (DOI):
19
11836
Dynamic Modeling of Underwater Manipulator and Its Simulation
Abstract: High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work
Keywords: Manipulator System,
Robot,
AUV,
Denavit-
Hartenberg method Lagrange theorem,
MALTAB,
ADAMS,
Direct
and Inverse Kinematics,
Dynamics,
PD Control-law,
Interlink Force
Sensing ResistorTM,
intelligent artificial skin system.
Digital Article Identifier (DOI):
18
8220
An Iterative Algorithm for Inverse Kinematics of 5-DOF Manipulator with Offset Wrist
Abstract: This paper presents an iterative algorithm to find a
inverse kinematic solution of 5-DOF robot. The algorithm is to
minimize the iteration number. Since the 5-DOF robot cannot give full
orientation of tool. Only z-direction of tool is satisfied while rotation
of tool is determined by kinematic constraint. This work therefore
described how to specify the tool direction and let the tool rotation free.
The simulation results show that this algorithm effectively worked.
Using the proposed iteration algorithm, error due to inverse kinematics
converged to zero rapidly in 5 iterations. This algorithm was applied in
real welding robot and verified through various practical works.
Digital Article Identifier (DOI):
17
2422
Kinematic Analysis of a Novel Complex DoF Parallel Manipulator
Abstract: In this research work, a novel parallel manipulator
with high positioning and orienting rate is introduced. This
mechanism has two rotational and one translational degree of
freedom. Kinematics and Jacobian analysis are investigated.
Moreover, workspace analysis and optimization has been performed
by using genetic algorithm toolbox in Matlab software. Because of
decreasing moving elements, it is expected much more better
dynamic performance with respect to other counterpart mechanisms
with the same degrees of freedom. In addition, using couple of
cylindrical and revolute joints increased mechanism ability to have
more extended workspace.
Digital Article Identifier (DOI):
16
3137
Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network
Abstract: Automatic control of the robotic manipulator involves
study of kinematics and dynamics as a major issue. This paper
involves the forward and inverse kinematics of 2-DOF robotic
manipulator with revolute joints. In this study the Denavit-
Hartenberg (D-H) model is used to model robot links and joints. Also
forward and inverse kinematics solution has been achieved using
Artificial Neural Networks for 2-DOF robotic manipulator. It shows
that by using artificial neural network the solution we get is faster,
acceptable and has zero error.
Digital Article Identifier (DOI):
15
521
Modeling and Simulation of Robotic Arm Movement using Soft Computing
Abstract: In this research paper we have presented control
architecture for robotic arm movement and trajectory planning using
Fuzzy Logic (FL) and Genetic Algorithms (GAs). This architecture is
used to compensate the uncertainties like; movement, friction and
settling time in robotic arm movement. The genetic algorithms and
fuzzy logic is used to meet the objective of optimal control
movement of robotic arm. This proposed technique represents a
general model for redundant structures and may extend to other
structures. Results show optimal angular movement of joints as result
of evolutionary process. This technique has edge over the other
techniques as minimum mathematics complexity used.
Digital Article Identifier (DOI):
14
13261
Forward Kinematics Analysis of a 3-PRS Parallel Manipulator
Abstract: In this article the homotopy continuation method (HCM) to solve the forward kinematic problem of the 3-PRS parallel manipulator is used. Since there are many difficulties in solving the system of nonlinear equations in kinematics of manipulators, the numerical solutions like Newton-Raphson are inevitably used. When dealing with any numerical solution, there are two troublesome problems. One is that good initial guesses are not easy to detect and another is related to whether the used method will converge to useful solutions. Results of this paper reveal that the homotopy continuation method can alleviate the drawbacks of traditional numerical techniques.
Digital Article Identifier (DOI):
13
2713
Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement
Abstract: In this paper, we present optimal control for
movement and trajectory planning for four degrees-of-freedom robot
using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have
evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs)
for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like;
Movement, Friction and Settling Time in robotic arm movement
have been compensated using Fuzzy logic and Genetic Algorithms.
The development of a fuzzy genetic optimization algorithm is
presented and discussed. The result are compared only GA and
Fuzzy GA. This paper describes genetic algorithms, which is
designed to optimize robot movement and trajectory. Though the
model represents is a general model for redundant structures and
could represent any n-link structures. The result is a complete
trajectory planning with Fuzzy logic and Genetic algorithms
demonstrating the flexibility of this technique of artificial
intelligence.
Digital Article Identifier (DOI):
12
541
Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Abstract: Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Digital Article Identifier (DOI):
11
2263
Identifying the Kinematic Parameters of Hexapod Machine Tool
Abstract: Hexapod Machine Tool (HMT) is a parallel robot
mostly based on Stewart platform. Identification of kinematic
parameters of HMT is an important step of calibration procedure. In
this paper an algorithm is presented for identifying the kinematic
parameters of HMT using inverse kinematics error model. Based on
this algorithm, the calibration procedure is simulated. Measurement
configurations with maximum observability are decided as the first
step of this algorithm for a robust calibration. The errors occurring in
various configurations are illustrated graphically. It has been shown
that the boundaries of the workspace should be searched for the
maximum observability of errors. The importance of using
configurations with sufficient observability in calibrating hexapod
machine tools is verified by trial calibration with two different
groups of randomly selected configurations. One group is selected to
have sufficient observability and the other is in disregard of the
observability criterion. Simulation results confirm the validity of the
proposed identification algorithm.
Digital Article Identifier (DOI):
10
4242
Acceleration Analysis of a Rotating Body
Abstract: The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.
Digital Article Identifier (DOI):
9
713
Neural Networks Approaches for Computing the Forward Kinematics of a Redundant Parallel Manipulator
Abstract: In this paper, different approaches to solve the
forward kinematics of a three DOF actuator redundant hydraulic
parallel manipulator are presented. On the contrary to series
manipulators, the forward kinematic map of parallel manipulators
involves highly coupled nonlinear equations, which are almost
impossible to solve analytically. The proposed methods are using
neural networks identification with different structures to solve the
problem. The accuracy of the results of each method is analyzed in
detail and the advantages and the disadvantages of them in
computing the forward kinematic map of the given mechanism is
discussed in detail. It is concluded that ANFIS presents the best
performance compared to MLP, RBF and PNN networks in this
particular application.
Digital Article Identifier (DOI):
8
11605
Bio-mechanical Analysis of Human Joints and Extension of the Study to Robot
Abstract: In this paper, the bio-mechanical analysis of human joints is carried out and the study is extended to the robot manipulator. This study will first focus on the kinematics of human arm which include the movement of each joint in shoulder, wrist, elbow and finger complexes. Those analyses are then extended to the design of a human robot manipulator. A simulator is built for Direct Kinematics and Inverse Kinematics of human arm. In the simulation of Direct Kinematics, the human joint angles can be inserted, while the position and orientation of each finger tips (end-effector) are shown. Inverse Kinematics does the reverse of the Direct Kinematics. Based on previous materials obtained from kinematics analysis, the human manipulator joints can be designed to follow prescribed position trajectories.
Digital Article Identifier (DOI):
7
14824
Kinematics and Control System Design of Manipulators for a Humanoid Robot
Abstract: In this work, a new approach is proposed to control
the manipulators for Humanoid robot. The kinematics of the
manipulators in terms of joint positions, velocity, acceleration and
torque of each joint is computed using the Denavit Hardenberg (D-H)
notations. These variables are used to design the manipulator control
system, which has been proposed in this work. In view of supporting
the development of a controller, a simulation of the manipulator is
designed for Humanoid robot. This simulation is developed through
the use of the Virtual Reality Toolbox and Simulink in Matlab. The
Virtual Reality Toolbox in Matlab provides the interfacing and
controls to an environment which is developed based on the Virtual
Reality Modeling Language (VRML). Chains of bones were used to
represent the robot.
Digital Article Identifier (DOI):
6
13795
Design of a 5-Joint Mechanical Arm with User-Friendly Control Program
Abstract: This paper describes the design concepts and
implementation of a 5-Joint mechanical arm for a rescue robot named
CEO Mission II. The multi-joint arm is a five degree of freedom
mechanical arm with a four bar linkage, which can be stretched to
125 cm. long. It is controlled by a teleoperator via the user-friendly
control and monitoring GUI program. With Inverse Kinematics
principle, we developed the method to control the servo angles of all
arm joints to get the desired tip position. By clicking the determined
tip position or dragging the tip of the mechanical arm on the
computer screen to the desired target point, the robot will compute
and move its multi-joint arm to the pose as seen on the GUI screen.
The angles of each joint are calculated and sent to all joint servos
simultaneously in order to move the mechanical arm to the desired
pose at once. The operator can also use a joystick to control the
movement of this mechanical arm and the locomotion of the robot.
Many sensors are installed at the tip of this mechanical arm for
surveillance from the high level and getting the vital signs of victims
easier and faster in the urban search and rescue tasks. It works very
effectively and easy to control. This mechanical arm and its software
were developed as a part of the CEO Mission II Rescue Robot that
won the First Runner Up award and the Best Technique award from
the Thailand Rescue Robot Championship 2006. It is a low cost,
simple, but functioning 5-Jiont mechanical arm which is built from
scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont
mechanical arm hardware concept and its software can also be used
as the basic mechatronics to many real applications.
Digital Article Identifier (DOI):
5
4990
Genetic Algorithm Based Optimal Control for a 6-DOF Non Redundant Stewart Manipulator
Abstract: Applicability of tuning the controller gains for Stewart manipulator using genetic algorithm as an efficient search technique is investigated. Kinematics and dynamics models were introduced in detail for simulation purpose. A PD task space control scheme was used. For demonstrating technique feasibility, a Stewart manipulator numerical-model was built. A genetic algorithm was then employed to search for optimal controller gains. The controller was tested onsite a generic circular mission. The simulation results show that the technique is highly convergent with superior performance operating for different payloads.
Digital Article Identifier (DOI):
4
10518
Software Development for the Kinematic Analysis of a Lynx 6 Robot Arm
Abstract: The kinematics of manipulators is a central problem in the automatic control of robot manipulators. Theoretical background for the analysis of the 5 Dof Lynx-6 educational Robot Arm kinematics is presented in this paper. The kinematics problem is defined as the transformation from the Cartesian space to the joint space and vice versa. The Denavit-Harbenterg (D-H) model of representation is used to model robot links and joints in this study. Both forward and inverse kinematics solutions for this educational manipulator are presented, An effective method is suggested to decrease multiple solutions in inverse kinematics. A visual software package, named MSG, is also developed for testing Motional Characteristics of the Lynx-6 Robot arm. The kinematics solutions of the software package were found to be identical with the robot arm-s physical motional behaviors.
Digital Article Identifier (DOI):
3
6544
Kinematic Modelling and Maneuvering of A 5-Axes Articulated Robot Arm
Abstract: This paper features the kinematic modelling of a 5-axis stationary articulated robot arm which is used for doing successful robotic manipulation task in its workspace. To start with, a 5-axes articulated robot was designed entirely from scratch and from indigenous components and a brief kinematic modelling was performed and using this kinematic model, the pick and place task was performed successfully in the work space of the robot. A user friendly GUI was developed in C++ language which was used to perform the successful robotic manipulation task using the developed mathematical kinematic model. This developed kinematic model also incorporates the obstacle avoiding algorithms also during the pick and place operation.
Digital Article Identifier (DOI):
2
15993
On Maneuvering Target Tracking with Online Observed Colored Glint Noise Parameter Estimation
Abstract: In this paper a comprehensive algorithm is presented to alleviate the undesired simultaneous effects of target maneuvering, observed glint noise distribution, and colored noise spectrum using online colored glint noise parameter estimation. The simulation results illustrate a significant reduction in the root mean square error (RMSE) produced by the proposed algorithm compared to the algorithms that do not compensate all the above effects simultaneously.
Digital Article Identifier (DOI):