22
10009012
Development of an Indoor Drone Designed for the Needs of the Creative Industries
Abstract: With this contribution, we want to show how the AiRT system could change the future way of working of a part of the creative industry and what new economic opportunities could arise for them. Remotely Piloted Aircraft Systems (RPAS), also more commonly known as drones, are now essential tools used by many different companies for their creative outdoor work. However, using this very flexible applicable tool indoor is almost impossible, since safe navigation cannot be guaranteed by the operator due to the lack of a reliable and affordable indoor positioning system which ensures a stable flight, among other issues. Here we present our first results of a European project, which consists of developing an indoor drone for professional footage especially designed for the creative industries. One of the main achievements of this project is the successful implication of the end-users in the overall design process from the very beginning. To ensure safe flight in confined spaces, our drone incorporates a positioning system based on ultra-wide band technology, an RGB-D (depth) camera for 3D environment reconstruction and the possibility to fully pre-program automatic flights. Since we also want to offer this tool for inexperienced pilots, we have always focused on user-friendly handling of the whole system throughout the entire process.
Digital Article Identifier (DOI):
21
10000503
Design of a Novel CPW Fed Fractal Antenna for UWB
Abstract: This paper presents a novel fractal antenna structure
proposed for UWB (Ultra – Wideband) applications. The frequency
band 3.1-10.6GHz released by FCC (Federal Communication
Commission) as the commercial operation of UWB has been chosen
as frequency range for this antenna based on coplanar waveguide
(CPW) feed and circular shapes fulfilled according to fractal
geometry. The proposed antenna is validated and designed by using
an FR4 substrate with overall area of 34x43 mm2. The simulated
results performed by CST-Microwave Studio and compared by ADS
(Advanced Design System) show good matching input impedance
with return loss less than -10dB between 2.9 GHz and 11 GHz.
Digital Article Identifier (DOI):
20
10000613
Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting
Abstract: A compact UWB planar antenna fed with a
microstrip-line is proposed. The new design consist of a rectangular
patch with symmetric l-shaped slots and fed by 50 Ω microstrip
transmission line and a reduced ground-plane which have a periodic
slots with an overall size of 47 mm x 20 mm. It is intended to be used
in wireless applications that cover the ultra-wideband (UWB)
frequency band. A wider impedance bandwidth of around 116.5%
(1.875 – 7.115 GHz) with stable radiation pattern is achieved. The
proposed antenna has excellent characteristics, low profile and costeffective
compared to existing UWB antennas. The UWB antenna is
designed and analyzed using CST Microwave Studio in transient
mode to verify antenna parameters improvements.
Digital Article Identifier (DOI):
19
10002215
Analysis of Design Structuring and Performance of CPW Fed UWB Antenna in Presence of Human Arm Model
Abstract: A compact Ultra Wide Band (UWB) antenna with coplanar
waveguide feed has been designed and results are verified in
this paper. The antenna has been designed on FR4 substrate with
dielectric constant (εr) of 4.4 and dimensions of 32mm x 26mm x
0.8mm. The presented antenna shows return loss characteristics in the
band of 3.1 to 10.6 GHz as prescribed by FCC, USA. Parametric
studies have been done and results thus obtained have been
presented. Simulated results have been verified on Rohde & Swartz
VNA. The measured results are in good agreement with simulated
results which make the presented antenna suitable to be used for
wearable applications. Performance analysis of antenna has also been
shown in the presence of three layered Human Arm model. Results
obtained in presence of Human Arm model has been compared with
that in free space.
Digital Article Identifier (DOI):
18
9998857
Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location
Abstract: This paper presents breast cancer detection by
observing the specific absorption rate (SAR) intensity for
identification tumor location, the tumor is identified in coordinates
(x,y,z) system. We examined the frequency between 4-8 GHz to look
for the most appropriate frequency. Results are simulated in
frequency 4-8 GHz, the model overview include normal breast with
50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB)
bowtie antenna. The models are created and simulated in CST
Microwave Studio. For this simulation, we changed antenna to 5
location around the breast, the tumor can be detected when an
antenna is close to the tumor location, which the coordinate of
maximum SAR is approximated the tumor location. For reliable, we
experiment by random tumor location to 3 position in the same size
of tumor and simulation the result again by varying the antenna
position in 5 position again, and it also detectable the tumor position
from the antenna that nearby tumor position by maximum value of
SAR, which it can be detected the tumor with precision in all
frequency between 4-8 GHz.
Digital Article Identifier (DOI):
17
9997330
Square Printed Monopole Antenna for Wireless Applications
Abstract: In this article design and optimization of square printed monopole antenna for wireless application is proposed. Theory of characteristics mode (TCM) is used for analysis of current modes on the antenna. TCM analysis shows that beveled ground plane improves the impedance bandwidth. The antenna operates over the frequency range from 1.860 GHz to 5 GHz for a VSWR ≤ 2, covering the GSM (1900-1990MHz), IMT-2000(1920-2170MHz), Bluetooth (2.400-2484 MHz) and lower band of ultrawideband (UWB). Stable radiation pattern shows minimal pulse distortion. The radiation pattern is omni-directional along the H-plane and figure of eight along the E-plane. Size of proposed antenna is 39 mm x 29 mm x 1.6mm. Antenna is simulated using CAD FEKO suite (6.2) using method of moment. A prototype antenna is fabricated using FR4 dielectric substrate with a dielectric constant of 4.4 and loss tangent of 0.02 to validate the simulated and measured results of the proposed antenna. Measured results are in good agreement with simulated results.
Digital Article Identifier (DOI):
16
16698
Distance Estimation for Radar Systems Using DS-UWB Signals
Abstract: In this paper, we propose a distance estimation scheme
for radar systems using direct sequence ultra wideband (DS-UWB)
signals. The proposed distance estimation scheme averages out the
noise by accumulating the correlator outputs of the radar, and thus,
helps the radar to employ a short-length DS-UWB signal reducing
the correlation processing time. Numerical results confirm that the
proposed distance estimation scheme provides a better estimation
performance and a reduced correlation processing time compared
with those of the conventional DS-UWB radars.
Digital Article Identifier (DOI):
15
16253
Ultra-Wideband Slot Antenna with Notched Band for World Interoperability for Microwave Access
Abstract: In this paper a novel ultra-wideband (UWB) slot antenna with band notch characteristics for world interoperability for microwave access (WiMAX) is proposed. The designed antenna consists of a rectangular radiating patch and a ground plane with tapered shape slot. To realize a notch band, a curved parasitic element has been etched out along with the radiating patch. It is observed that by adjusting the length, thickness and position of the parasitic element, the proposed antenna can achieved an impedance bandwidth of 8.01GHz (2.84 to 10.85GHz) with a notched band of 3.28-3.85GHz. Compared to the recently reported band notch antennas, the proposed antenna has a simple configuration to realize band notch characteristics in order to mitigate the potential interference between WiMAX and UWB system. Furthermore, a stable radiation pattern and moderate gain except at the notched band makes the proposed antenna suitable for various UWB applications.
Digital Article Identifier (DOI):
14
2427
UWB Bowtie Slot Antenna for Breast Cancer Detection
Abstract: UWB is a very attractive technology for many
applications. It provides many advantages such as fine resolution and high power efficiency. Our interest in the current study is the use of
UWB radar technique in microwave medical imaging systems, especially for early breast cancer detection. The Federal Communications Commission FCC allowed frequency bandwidth of
3.1 to 10.6 GHz for this purpose. In this paper we suggest an UWB Bowtie slot antenna with enhanced bandwidth. Effects of varying the geometry of the antenna
on its performance and bandwidth are studied. The proposed antenna
is simulated in CST Microwave Studio. Details of antenna design and
simulation results such as return loss and radiation patterns are discussed in this paper. The final antenna structure exhibits good
UWB characteristics and has surpassed the bandwidth requirements.
Digital Article Identifier (DOI):
13
6328
New Triangle-Ring UWB Bandpass Filter with Sharp Roll-Off and Dual Notched Bands
Abstract: This paper presents a new ultra-wideband (UWB) bandpass filter (BPF) with sharp roll-off and dual-notched bands. The filter consists of a triangle ring multi-mode resonator (MMR) with the stub-loaded resonator (SLR) for controlling the two transmission zeros at 2.8 / 11 GHz, the embedded open-circuited stub and the asymmetric tight coupled input/output (I/O) lines for introducing the dual notched bands at 5.2 / 6.8 GHz. The attenuation slope in the lower and higher passband edges of the proposed filter show 160- and 153-dB/GHz, respectively. This study mainly provides a simple method to design a UWB bandpass filter with high passband selectivity and dual-notched bands for satisfying the Federal Communications Commission (FCC-defined) indoor UWB specification
Digital Article Identifier (DOI):
12
4599
Design of a Low Power Compensated 90nm RF Multiplier with Improved Isolation Characteristics for a Transmitted Reference Receiver Front End
Abstract: In this paper, a double balanced radio frequency multiplier
is presented which is customized for transmitted reference
ultra wideband (UWB) receivers. The multiplier uses 90nm model
parameters and exploits compensating transistors to provide controllable
gain for a Gilbert core. After performing periodic and quasiperiodic
non linear analyses the RF mixer (multiplier) achieves a
voltage conversion gain of 16 dB and a DSB noise figure of 8.253
dB with very low power consumption. A high degree of LO to RF
isolation (in the range of -94dB), RF to IF isolation (in the range of
-95dB) and LO to IF isolation (in the range of -143dB) is expected
for this design with an input-referred IP3 point of -1.93 dBm and an
input referred 1 dB compression point of -10.67dBm. The amount of
noise at the output is 7.7 nV/√Hz when the LO input is driven by
a 10dBm signal. The mixer manifests better results when compared
with other reported multiplier circuits and its Zero-IF performance
ensures its applicability as TR-UWB multipliers.
Digital Article Identifier (DOI):
11
13505
Suppression of Narrowband Interference in Impulse Radio Based High Data Rate UWB WPAN Communication System Using NLOS Channel Model
Abstract: Study on suppression of interference in time domain equalizers is attempted for high data rate impulse radio (IR) ultra wideband communication system. The narrow band systems may cause interference with UWB devices as it is having very low transmission power and the large bandwidth. SRAKE receiver improves system performance by equalizing signals from different paths. This enables the use of SRAKE receiver techniques in IRUWB systems. But Rake receiver alone fails to suppress narrowband interference (NBI). A hybrid SRake-MMSE time domain equalizer is proposed to overcome this by taking into account both the effect of the number of rake fingers and equalizer taps. It also combats intersymbol interference. A semi analytical approach and Monte-Carlo simulation are used to investigate the BER performance of SRAKEMMSE receiver on IEEE 802.15.3a UWB channel models. Study on non-line of sight indoor channel models (both CM3 and CM4) illustrates that bit error rate performance of SRake-MMSE receiver with NBI performs better than that of Rake receiver without NBI. We show that for a MMSE equalizer operating at high SNR-s the number of equalizer taps plays a more significant role in suppressing interference.
Digital Article Identifier (DOI):
10
1415
Demonstration of a Low-Cost Monocycle Pulse for UWB Radio Transceiver
Abstract: This paper presents a simple and original method for
the generation of short monocycle pulses based on the transient
response of a passive band-pass filter. The recorded sub-nanosecond
pulses show a good symmetry and a small ringing (13 % of the peak
amplitude). Their spectral density covers the range 3.1 GHz to
10.6 GHz. The possibility to adapt the pulse spectral density to the
indoor FCC frequency mask is demonstrated with a prototype
working at a reduced frequency (FCC/1000). A detection technique is
proposed.
Digital Article Identifier (DOI):
9
13441
Compact Planar Antenna for UWB Applications
Abstract: In this paper, a planar antenna for UWB applications
has been proposed. The antenna consists of a square patch, a partial
ground plane and a slot on the ground plane. The proposed antenna is
easy to be integrated with microwave circuitry for low manufacturing
cost. The flat type antenna has a compact structure and the total size
is 14.5×14.5mm2. The result shows that the impedance bandwidth
(VSWR≤ 2) of the proposed antenna is 12.49 GHz (2.95 to 15.44
GHz), which is equivalent to 135.8%. Details of the proposed
compact planar UWB antenna design is presented and discussed.
Digital Article Identifier (DOI):
8
8246
A Robust Reception of IEEE 802.15.4a IR-TH UWB in Dense Multipath and Gaussian Noise
Abstract: IEEE 802.15.4a impulse radio-time hopping ultra wide
band (IR-TH UWB) physical layer, due to small duty cycle and very
short pulse widths is robust against multipath propagation. However,
scattering and reflections with the large number of obstacles in indoor
channel environments, give rise to dense multipath fading. It imposes
serious problem to optimum Rake receiver architectures, for which
very large number of fingers are needed. Presence of strong noise
also affects the reception of fine pulses having extremely low power
spectral density. A robust SRake receiver for IEEE 802.15.4a IRTH
UWB in dense multipath and additive white Gaussian noise
(AWGN) is proposed to efficiently recover the weak signals with
much reduced complexity. It adaptively increases the signal to noise
(SNR) by decreasing noise through a recursive least square (RLS)
algorithm. For simulation, dense multipath environment of IEEE
802.15.4a industrial non line of sight (NLOS) is employed. The power
delay profile (PDF) and the cumulative distribution function (CDF)
for the respective channel environment are found. Moreover, the error
performance of the proposed architecture is evaluated in comparison
with conventional SRake and AWGN correlation receivers. The
simulation results indicate a substantial performance improvement
with very less number of Rake fingers.
Digital Article Identifier (DOI):
7
2364
BER Performance of UWB Modulations through S-V Channel Model
Abstract: BER analysis of Impulse Radio Ultra Wideband (IRUWB) pulse modulations over S-V channel model is proposed in this paper. The UWB pulse is Gaussian monocycle pulse modulated using Pulse Amplitude Modulation (PAM) and Pulse Position Modulation (PPM). The channel model is generated from a modified S-V model. Bit-error rate (BER) is measured over several of bit rates. The result shows that all modulation are appropriate for both LOS and NLOS channel, but PAM gives better performance in bit rates and SNR. Moreover, as standard of speed has been given for UWB, the communication is appropriate with high bit rates in LOS channel.
Digital Article Identifier (DOI):
6
14750
A Low Complexity Frequency Offset Estimation for MB-OFDM based UWB Systems
Abstract: A low-complexity, high-accurate frequency offset
estimation for multi-band orthogonal frequency division multiplexing (MB-OFDM) based ultra-wide band systems is presented regarding different carrier frequency offsets, different channel frequency
responses, different preamble patterns in different bands. Utilizing a
half-cycle Constant Amplitude Zero Auto Correlation (CAZAC) sequence as the preamble sequence, the estimator with a semi-cross
contrast scheme between two successive OFDM symbols is proposed. The CRLB and complexity of the proposed algorithm are derived.
Compared to the reference estimators, the proposed method achieves
significantly less complexity (about 50%) for all preamble patterns of the MB-OFDM systems. The CRLBs turn out to be of well performance.
Digital Article Identifier (DOI):
5
9846
Increasing the Efficiency of Rake Receivers for Ultra-Wideband Applications
Abstract: In diversity rich environments, such as in Ultra-
Wideband (UWB) applications, the a priori determination of the
number of strong diversity branches is difficult, because of the considerably large number of diversity paths, which are characterized
by a variety of power delay profiles (PDPs). Several
Rake implementations have been proposed in the past, in order to reduce the number of the estimated and combined paths. To this
aim, we introduce two adaptive Rake receivers, which combine
a subset of the resolvable paths considering simultaneously the
quality of both the total combining output signal-to-noise ratio (SNR) and the individual SNR of each path. These schemes achieve
better adaptation to channel conditions compared to other known receivers, without further increasing the complexity. Their performance
is evaluated in different practical UWB channels, whose models are based on extensive propagation measurements. The
proposed receivers compromise between the power consumption,
complexity and performance gain for the additional paths, resulting in important savings in power and computational resources.
Digital Article Identifier (DOI):
4
6171
Optimal One Bit Time Reversal For UWB Impulse Radio In Multi-User Wireless Communications
Abstract: In this paper, with the purpose of further reducing the
complexity of the system, while keeping its temporal and spatial
focusing performance, we investigate the possibility of using optimal
one bit time reversal (TR) system for impulse radio ultra wideband
multi-user wireless communications. The results show that, by optimally
selecting the number of used taps in the pre-filter the optimal
one bit TR system can outperform the full one bit TR system. In
some cases, the temporal and spatial focusing performance of the
optimal one bit TR system appears to be compatible with that of the
original TR system. This is a significant result as the overhead cost
is much lower than it is required in the original TR system.
Digital Article Identifier (DOI):
3
4881
Impact of Metallic Furniture on UWB Channel Statistical Characteristics by BER
Abstract: The bit error rate (BER) performance for ultra-wide
band (UWB) indoor communication with impact of metallic furniture
is investigated. The impulse responses of different indoor
environments for any transmitter and receiver location are computed
by shooting and bouncing ray/image and inverse Fourier transform
techniques. By using the impulse responses of these multipath
channels, the BER performance for binary pulse amplitude
modulation (BPAM) impulse radio UWB communication system are
calculated. Numerical results have shown that the multi-path effect
by the metallic cabinets is an important factor for BER performance.
Also the outage probability for the UWB multipath environment with
metallic cabinets is more serious (about 18%) than with wooden
cabinets. Finally, it is worth noting that in these cases the present
work provides not only comparative information but also quantitative
information on the performance reduction.
Digital Article Identifier (DOI):
2
13295
IMM based Kalman Filter for Channel Estimation in MB OFDM Systems
Abstract: Ultra-wide band (UWB) communication is one of
the most promising technologies for high data rate wireless networks
for short range applications. This paper proposes a blind channel
estimation method namely IMM (Interactive Multiple Model) Based
Kalman algorithm for UWB OFDM systems. IMM based Kalman
filter is proposed to estimate frequency selective time varying
channel. In the proposed method, two Kalman filters are concurrently
estimate the channel parameters. The first Kalman filter namely
Static Model Filter (SMF) gives accurate result when the user is static
while the second Kalman filter namely the Dynamic Model Filter
(DMF) gives accurate result when the receiver is in moving state. The
static transition matrix in SMF is assumed as an Identity matrix
where as in DMF, it is computed using Yule-Walker equations. The
resultant filter estimate is computed as a weighted sum of individual
filter estimates. The proposed method is compared with other existing
channel estimation methods.
Digital Article Identifier (DOI):
1
7124
Nearfield UWB Pulse Array Beamformer based on Multirate Filter Bank
Abstract: The paper presents a method of designing ultrawide band (UWB) pulse array beamformer in the case of nearfield. Firstly the principle of space-time processing of UWB pulse array is discussed. The radical beampattern transform based on spherical coordinates is employed to solve the nearfield beamforming of UWB pulse array. The frequency invariant technology is considered for the frequency dependent beampattern of UWB pulse array. We use a multirate bank scheme of to implement the FI beamformer of UWB pulse array. By using multirate filters in each element channel, it can make the response of the UWB array to avoid distortion in the whole band. The simulation resultes are given to prove the efficiency and feasibility of this method.
Digital Article Identifier (DOI):