Open Science Research Excellence

Open Science Index

Commenced in January 2007 Frequency: Monthly Edition: International Paper Count: 12

12
10009504
Parameter Estimation of Diode Circuit Using Extended Kalman Filter
Abstract:
This paper presents parameter estimation of a single-phase rectifier using extended Kalman filter (EKF). The state space model has been obtained using Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL). The capacitor voltage and diode current of the circuit have been estimated using EKF. Simulation results validate the better accuracy of the proposed method as compared to the least mean square method (LMS). Further, EKF has the advantage that it can be used for nonlinear systems.
11
10007620
Analysis of Translational Ship Oscillations in a Realistic Environment
Abstract:

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

10
10007369
Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter
Abstract:
In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.
9
10000951
Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters
Abstract:

In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.

8
9999233
State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter
Abstract:

This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.

7
9996931
On the Modeling and State Estimation for Dynamic Power System
Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

6
15444
Low-Cost and Highly Accurate Motion Models for Three-Dimensional Local Landmark-based Autonomous Navigation
Abstract:

Recently, the Spherical Motion Models (SMM-s) have been introduced [1]. These new models have been developed for 3D local landmark-base Autonomous Navigation (AN). This paper is revealing new arguments and experimental results to support the SMM-s characteristics. The accuracy and the robustness in performing a specific task are the main concerns of the new investigations. To analyze their performances of the SMM-s, the most powerful tools of estimation theory, the extended Kalman filter (EKF) and unscented Kalman filter (UKF), which give the best estimations in noisy environments, have been employed. The Monte Carlo validation implementations used to test the stability and robustness of the models have been employed as well.

5
9207
Static Single Point Positioning Using The Extended Kalman Filter
Abstract:

Global Positioning System (GPS) technology is widely used today in the areas of geodesy and topography as well as in aeronautics mainly for military purposes. Due to the military usage of GPS, full access and use of this technology is being denied to the civilian user who must then work with a less accurate version. In this paper we focus on the estimation of the receiver coordinates ( X, Y, Z ) and its clock bias ( δtr ) of a fixed point based on pseudorange measurements of a single GPS receiver. Utilizing the instantaneous coordinates of just 4 satellites and their clock offsets, by taking into account the atmospheric delays, we are able to derive a set of pseudorange equations. The estimation of the four unknowns ( X, Y, Z , δtr ) is achieved by introducing an extended Kalman filter that processes, off-line, all the data collected from the receiver. Higher performance of position accuracy is attained by appropriate tuning of the filter noise parameters and by including other forms of biases.

4
4347
An Investigative Study into Observer based Non-Invasive Fault Detection and Diagnosis in Induction Motors
Abstract:
A new observer based fault detection and diagnosis scheme for predicting induction motors- faults is proposed in this paper. Prediction of incipient faults, using different variants of Kalman filter and their relative performance are evaluated. Only soft faults are considered for this work. The data generation, filter convergence issues, hypothesis testing and residue estimates are addressed. Simulink model is used for data generation and various types of faults are considered. A comparative assessment of the estimates of different observers associated with these faults is included.
3
4628
Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series
Authors:
Abstract:

The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.

2
14424
Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability
Abstract:
For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling" of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well.
1
15136
A New Version of Unscented Kalman Filter
Abstract:

This paper presents a new algorithm which yields a nonlinear state estimator called iterated unscented Kalman filter. This state estimator makes use of both statistical and analytical linearization techniques in different parts of the filtering process. It outperforms the other three nonlinear state estimators: unscented Kalman filter (UKF), extended Kalman filter (EKF) and iterated extended Kalman filter (IEKF) when there is severe nonlinearity in system equation and less nonlinearity in measurement equation. The algorithm performance has been verified by illustrating some simulation results.


Vol:13 No:12 2019Vol:13 No:11 2019Vol:13 No:10 2019Vol:13 No:09 2019Vol:13 No:08 2019Vol:13 No:07 2019Vol:13 No:06 2019Vol:13 No:05 2019Vol:13 No:04 2019Vol:13 No:03 2019Vol:13 No:02 2019Vol:13 No:01 2019
Vol:12 No:12 2018Vol:12 No:11 2018Vol:12 No:10 2018Vol:12 No:09 2018Vol:12 No:08 2018Vol:12 No:07 2018Vol:12 No:06 2018Vol:12 No:05 2018Vol:12 No:04 2018Vol:12 No:03 2018Vol:12 No:02 2018Vol:12 No:01 2018
Vol:11 No:12 2017Vol:11 No:11 2017Vol:11 No:10 2017Vol:11 No:09 2017Vol:11 No:08 2017Vol:11 No:07 2017Vol:11 No:06 2017Vol:11 No:05 2017Vol:11 No:04 2017Vol:11 No:03 2017Vol:11 No:02 2017Vol:11 No:01 2017
Vol:10 No:12 2016Vol:10 No:11 2016Vol:10 No:10 2016Vol:10 No:09 2016Vol:10 No:08 2016Vol:10 No:07 2016Vol:10 No:06 2016Vol:10 No:05 2016Vol:10 No:04 2016Vol:10 No:03 2016Vol:10 No:02 2016Vol:10 No:01 2016
Vol:9 No:12 2015Vol:9 No:11 2015Vol:9 No:10 2015Vol:9 No:09 2015Vol:9 No:08 2015Vol:9 No:07 2015Vol:9 No:06 2015Vol:9 No:05 2015Vol:9 No:04 2015Vol:9 No:03 2015Vol:9 No:02 2015Vol:9 No:01 2015
Vol:8 No:12 2014Vol:8 No:11 2014Vol:8 No:10 2014Vol:8 No:09 2014Vol:8 No:08 2014Vol:8 No:07 2014Vol:8 No:06 2014Vol:8 No:05 2014Vol:8 No:04 2014Vol:8 No:03 2014Vol:8 No:02 2014Vol:8 No:01 2014
Vol:7 No:12 2013Vol:7 No:11 2013Vol:7 No:10 2013Vol:7 No:09 2013Vol:7 No:08 2013Vol:7 No:07 2013Vol:7 No:06 2013Vol:7 No:05 2013Vol:7 No:04 2013Vol:7 No:03 2013Vol:7 No:02 2013Vol:7 No:01 2013
Vol:6 No:12 2012Vol:6 No:11 2012Vol:6 No:10 2012Vol:6 No:09 2012Vol:6 No:08 2012Vol:6 No:07 2012Vol:6 No:06 2012Vol:6 No:05 2012Vol:6 No:04 2012Vol:6 No:03 2012Vol:6 No:02 2012Vol:6 No:01 2012
Vol:5 No:12 2011Vol:5 No:11 2011Vol:5 No:10 2011Vol:5 No:09 2011Vol:5 No:08 2011Vol:5 No:07 2011Vol:5 No:06 2011Vol:5 No:05 2011Vol:5 No:04 2011Vol:5 No:03 2011Vol:5 No:02 2011Vol:5 No:01 2011
Vol:4 No:12 2010Vol:4 No:11 2010Vol:4 No:10 2010Vol:4 No:09 2010Vol:4 No:08 2010Vol:4 No:07 2010Vol:4 No:06 2010Vol:4 No:05 2010Vol:4 No:04 2010Vol:4 No:03 2010Vol:4 No:02 2010Vol:4 No:01 2010
Vol:3 No:12 2009Vol:3 No:11 2009Vol:3 No:10 2009Vol:3 No:09 2009Vol:3 No:08 2009Vol:3 No:07 2009Vol:3 No:06 2009Vol:3 No:05 2009Vol:3 No:04 2009Vol:3 No:03 2009Vol:3 No:02 2009Vol:3 No:01 2009
Vol:2 No:12 2008Vol:2 No:11 2008Vol:2 No:10 2008Vol:2 No:09 2008Vol:2 No:08 2008Vol:2 No:07 2008Vol:2 No:06 2008Vol:2 No:05 2008Vol:2 No:04 2008Vol:2 No:03 2008Vol:2 No:02 2008Vol:2 No:01 2008
Vol:1 No:12 2007Vol:1 No:11 2007Vol:1 No:10 2007Vol:1 No:09 2007Vol:1 No:08 2007Vol:1 No:07 2007Vol:1 No:06 2007Vol:1 No:05 2007Vol:1 No:04 2007Vol:1 No:03 2007Vol:1 No:02 2007Vol:1 No:01 2007