Open Science Research Excellence

Chao Yuan

Publications

5

Publications

5
10001598
Two New Relative Efficiencies of Linear Weighted Regression
Abstract:
In statistics parameter theory, usually the parameter estimations have two kinds, one is the least-square estimation (LSE), and the other is the best linear unbiased estimation (BLUE). Due to the determining theorem of minimum variance unbiased estimator (MVUE), the parameter estimation of BLUE in linear model is most ideal. But since the calculations are complicated or the covariance is not given, people are hardly to get the solution. Therefore, people prefer to use LSE rather than BLUE. And this substitution will take some losses. To quantize the losses, many scholars have presented many kinds of different relative efficiencies in different views. For the linear weighted regression model, this paper discusses the relative efficiencies of LSE of β to BLUE of β. It also defines two new relative efficiencies and gives their lower bounds.
Keywords:
Linear weighted regression, Relative efficiency, Lower bound, Parameter estimation.
4
10003235
An Estimation of Variance Components in Linear Mixed Model
Abstract:
In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.
Keywords:
Linear mixed model, Random effects, Parameter estimation, Stein function.
3
10004984
The New Relative Efficiency Based on the Least Eigenvalue in Generalized Linear Model
Abstract:
A new relative efficiency is defined as LSE and BLUE in the generalized linear model. The relative efficiency is based on the ratio of the least eigenvalues. In this paper, we discuss about its lower bound and the relationship between it and generalized relative coefficient. Finally, this paper proves that the new estimation is better under Stein function and special condition in some degree.
Keywords:
Generalized linear model, generalized relative coefficient, least eigenvalue, relative efficiency.
2
10005391
Module and Comodule Structures on Path Space
Abstract:
On path space kQ, there is a trivial kQa-module structure determined by the multiplication of path algebra kQa and a trivial kQc-comodule structure determined by the comultiplication of path coalgebra kQc. In this paper, on path space kQ, a nontrivial kQa-module structure is defined, and it is proved that this nontrivial left kQa-module structure is isomorphic to the dual module structure of trivial right kQc-comodule. Dually, on path space kQ, a nontrivial kQc-comodule structure is defined, and it is proved that this nontrivial right kQc-comodule structure is isomorphic to the dual comodule structure of trivial left kQa-module. Finally, the trivial and nontrivial module structures on path space are compared from the aspect of submodule, and the trivial and nontrivial comodule structures on path space are compared from the aspect of subcomodule.
Keywords:
Quiver, path space, module, comodule, dual.
1
10005775
The Relative Efficiency Based on the MSE in Generalized Ridge Estimate
Abstract:
A relative efficiency is defined as Ridge Estimate in the general linear model. The relative efficiency is based on the Mean square error. In this paper, we put forward a parameter of Ridge Estimate and discussions are made on the relative efficiency between the ridge estimation and the General Ridge Estimate. Eventually, this paper proves that the estimation is better than the general ridge estimate, which is based on the MSE.
Keywords:
Ridge estimate, generalized ridge estimate, MSE, relative efficiency.