Open Science Research Excellence

Fei Xu

Publications

5

Publications

5
5965
A Survey of Business Component Identification Methods and Related Techniques
Abstract:
With deep development of software reuse, componentrelated technologies have been widely applied in the development of large-scale complex applications. Component identification (CI) is one of the primary research problems in software reuse, by analyzing domain business models to get a set of business components with high reuse value and good reuse performance to support effective reuse. Based on the concept and classification of CI, its technical stack is briefly discussed from four views, i.e., form of input business models, identification goals, identification strategies, and identification process. Then various CI methods presented in literatures are classified into four types, i.e., domain analysis based methods, cohesion-coupling based clustering methods, CRUD matrix based methods, and other methods, with the comparisons between these methods for their advantages and disadvantages. Additionally, some insufficiencies of study on CI are discussed, and the causes are explained subsequently. Finally, it is concluded with some significantly promising tendency about research on this problem.
Keywords:
Business component, component granularity, component identification, reuse performance.
4
9380
Edge Detection Algorithm Based on Wavelet De-nosing Applied tothe X-ray Image Enhancement of the Electric Equipment
Abstract:

The X-ray technology has been used in non-destructive evaluation in the Power System, in which a visual non-destructive inspection method for the electrical equipment is provided. However, lots of noise is existed in the images that are got from the X-ray digital images equipment. Therefore, the auto defect detection which based on these images will be very difficult to proceed. A theory on X-ray image de-noising algorithm based on wavelet transform is proposed in this paper. Then the edge detection algorithm is used so that the defect can be pushed out. The result of experiment shows that the method which utilized by this paper is very useful for de-noising on the X-ray images.

Keywords:
de-noising, edge detection, wavelet transform, X-ray
3
10728
Single Spectrum End Point Predict of BOF with SVM
Abstract:

SVM ( Support Vector Machine ) is a new method in the artificial neural network ( ANN ). In the steel making, how to use computer to predict the end point of BOF accuracy is a great problem. A lot of method and theory have been claimed, but most of the results is not satisfied. Now the hot topic in the BOF end point predicting is to use optical way the predict the end point in the BOF. And we found that there exist some regular in the characteristic curve of the flame from the mouse of pudding. And we can use SVM to predict end point of the BOF, just single spectrum intensity should be required as the input parameter. Moreover, its compatibility for the input space is better than the BP network.

Keywords:
SVM, predict, BOF, single spectrum intensity.
2
14902
The Comprehensive Study Based on Ultrasonic and X-ray Visual Technology for GIS Equipment Detection
Abstract:
For lack of the visualization of the ultrasonic detection method of partial discharge (PD), the ultrasonic detection technology combined with the X-ray visual detection method (UXV) is proposed. The method can conduct qualitative analysis accurately and conduct reliable positioning diagnosis to the internal insulation defects of GIS, and while it could make up the blindness of the X-ray visual detection method and improve the detection rate. In this paper, an experimental model of GIS is used as the trial platform, a variety of insulation defects are set inside the GIS cavity. With the proposed method, the ultrasonic method is used to conduct the preliminary detection, and then the X-ray visual detection is used to locate and diagnose precisely. Therefore, the proposed UXV technology is feasible and practical.
Keywords:
GIS, ultrasonic, visual detection, X-ray
1
10007684
Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform
Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords:
Hadoop platform planning, optimal cluster scheme at fixed-fund, performance empirical formula, typical SQL query tasks.