4

4

5624

On Bounds For The Zeros of Univariate Polynomial

Problems on algebraical polynomials appear in many fields of mathematics and computer science. Especially the task of determining the roots of polynomials has been frequently investigated.Nonetheless, the task of locating the zeros of complex polynomials is still challenging. In this paper we deal with the location of zeros of univariate complex polynomials. We prove some novel upper bounds for the moduli of the zeros of complex polynomials. That means, we provide disks in the complex plane where all zeros of a complex polynomial are situated. Such bounds are extremely useful for obtaining a priori assertations regarding the location of zeros of polynomials. Based on the proven bounds and a test set of polynomials, we present an experimental study to examine which bound is optimal.

complex polynomials, zeros, inequalities

3

10653

Towards Clustering of Web-based Document Structures

Methods for organizing web data into groups in order
to analyze web-based hypertext data and facilitate data availability
are very important in terms of the number of documents available
online. Thereby, the task of clustering web-based document structures
has many applications, e.g., improving information retrieval on the
web, better understanding of user navigation behavior, improving web
users requests servicing, and increasing web information accessibility.
In this paper we investigate a new approach for clustering web-based
hypertexts on the basis of their graph structures. The hypertexts will
be represented as so called generalized trees which are more general
than usual directed rooted trees, e.g., DOM-Trees. As a important
preprocessing step we measure the structural similarity between the
generalized trees on the basis of a similarity measure d. Then,
we apply agglomerative clustering to the obtained similarity matrix
in order to create clusters of hypertext graph patterns representing
navigation structures. In the present paper we will run our approach
on a data set of hypertext structures and obtain good results in
Web Structure Mining. Furthermore we outline the application of
our approach in Web Usage Mining as future work.

Clustering methods, graph-based patterns, graph similarity,
hypertext structures, web structure mining

2

15299

Application of a Similarity Measure for Graphs to Web-based Document Structures

Due to the tremendous amount of information provided
by the World Wide Web (WWW) developing methods for mining
the structure of web-based documents is of considerable interest. In
this paper we present a similarity measure for graphs representing
web-based hypertext structures. Our similarity measure is mainly
based on a novel representation of a graph as linear integer strings,
whose components represent structural properties of the graph. The
similarity of two graphs is then defined as the optimal alignment of
the underlying property strings. In this paper we apply the well known
technique of sequence alignments for solving a novel and challenging
problem: Measuring the structural similarity of generalized trees.
In other words: We first transform our graphs considered as high
dimensional objects in linear structures. Then we derive similarity
values from the alignments of the property strings in order to
measure the structural similarity of generalized trees. Hence, we
transform a graph similarity problem to a string similarity problem for
developing a efficient graph similarity measure. We demonstrate that
our similarity measure captures important structural information by
applying it to two different test sets consisting of graphs representing
web-based document structures.

Graph similarity, hierarchical and directed graphs,hypertext, generalized trees, web structure mining.

1

15928

Measuring the Structural Similarity of Web-based Documents: A Novel Approach

Most known methods for measuring the structural similarity of document structures are based on, e.g., tag measures, path metrics and tree measures in terms of their DOM-Trees. Other methods measures the similarity in the framework of the well known vector space model. In contrast to these we present a new approach to measuring the structural similarity of web-based documents represented by so called generalized trees which are more general than DOM-Trees which represent only directed rooted trees.We will design a new similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as strings of linear integers, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments to solve a novel and challenging problem: Measuring the structural similarity of generalized trees. More precisely, we first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based documents.

Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.