Open Science Research Excellence

N Taleb

Publications

5

Publications

5
953
Potential of Selected Microbial Strains to Degrade the Gasoil of Hydrocarbon Polluted Soil
Abstract:

Although oil-based drilling fluids are of paramount practical and economical interest, they represent a serious source of pollution, once released into the environment as drill cuttings. The aim of this study is to assess the capability of isolated microorganisms to degrade gasoil fuel. The commonly used physicochemical and biodegradation remediation techniques of petroleum contaminated soil were both investigated. The study revealed that natural biodegradation is favorable. Even though, the presence of heavy metals, the moisture level of (8.55%) and nutrient deficiencies put severe constrains on microorganisms- survival ranges inhibiting the biodegradation process. The selected strains were able to degrade the diesel fuel at significantly high rates (around 98%).

Keywords:
Biodegradation, Gasoil, Pollution, Microbial strains, Hydrocarbon, soil pollution
4
12632
Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin
Abstract:
The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.
Keywords:
External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.
3
16026
A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance
Abstract:
Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.
Keywords:
Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.
2
10002455
Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.
Keywords:
JPSO, operation, optimization, water distribution system.
1
10002572
Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.
Keywords:
G-JPSO, operation, optimization, pumping station, water distribution networks.