Open Science Research Excellence

Pavan S

Publications

1

Publications

1
2586
Multiple Regression based Graphical Modeling for Images
Abstract:

Super resolution is one of the commonly referred inference problems in computer vision. In the case of images, this problem is generally addressed using a graphical model framework wherein each node represents a portion of the image and the edges between the nodes represent the statistical dependencies. However, the large dimensionality of images along with the large number of possible states for a node makes the inference problem computationally intractable. In this paper, we propose a representation wherein each node can be represented as acombination of multiple regression functions. The proposed approach achieves a tradeoff between the computational complexity and inference accuracy by varying the number of regression functions for a node.

Keywords:
Belief propagation, Graphical model, Regression,Super resolution.