6

6

3345

On Fractional (k,m)-Deleted Graphs with Constrains Conditions

Let G be a graph of order n, and let k 2 and m 0 be two integers. Let h : E(G) [0, 1] be a function. If e∋x h(e) = k holds for each x V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {e E(G) : h(e) > 0}. A graph G is called a fractional (k,m)-deleted graph if there exists a fractional k-factor G[Fh] of G with indicator function h such that h(e) = 0 for any e E(H), where H is any subgraph of G with m edges. In this paper, it is proved that G is a fractional (k,m)-deleted graph if (G) k + m + m k+1 , n 4k2 + 2k − 6 + (4k 2 +6k−2)m−2 k−1 and max{dG(x), dG(y)} n 2 for any vertices x and y of G with dG(x, y) = 2. Furthermore, it is shown that the result in this paper is best possible in some sense.

Graph, degree condition, fractional k-factor, fractional (k,m)-deleted graph.

5

3455

[a, b]-Factors Excluding Some Specified Edges In Graphs

Let G be a graph of order n, and let a, b and m be positive integers with 1 ≤ a<b. An [a, b]-factor of G is deﬁned as a spanning subgraph F of G such that a ≤ dF (x) ≤ b for each x ∈ V (G). In this paper, it is proved that if n ≥ (a+b−1+√(a+b+1)m−2)2−1 b and δ(G) > n + a + b − 2 √bn+ 1, then for any subgraph H of G with m edges, G has an [a, b]-factor F such that E(H)∩ E(F) = ∅. This result is an extension of thatof Egawa [2].

graph, minimum degree, [a, b]-factor.

4

4161

A Neighborhood Condition for Fractional k-deleted Graphs

Abstract–Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k +3- 42(k - 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G is a fractional k-deleted graph if there exists a fractional k-factor after deleting any edge of G. In this paper, it is proved that G is a fractional k-deleted graph if G satisfies δ(G) ≥ k + 1 and |NG(x) ∪ NG(y)| ≥ 1 2 (n + k - 2) for each pair of nonadjacent vertices x, y of G.

Graph, minimum degree, neighborhood union, fractional k-factor, fractional k-deleted graph.

3

8232

Hamiltonian Factors in Hamiltonian Graphs

Let G be a Hamiltonian graph. A factor F of G is called
a Hamiltonian factor if F contains a Hamiltonian cycle. In this paper,
two sufficient conditions are given, which are two neighborhood
conditions for a Hamiltonian graph G to have a Hamiltonian factor.

graph, neighborhood, factor, Hamiltonian factor.

2

10536

A Sufficient Condition for Graphs to Have Hamiltonian [a, b]-Factors

Let a and b be nonnegative integers with 2 ≤ a < b, and let G be a Hamiltonian graph of order n with n ≥ (a+b−4)(a+b−2) b−2 . An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if |NG(X)| > (a−1)n+|X|−1 a+b−3 for every nonempty independent subset X of V (G) and δ(G) > (a−1)n+a+b−4 a+b−3 .

graph, minimum degree, neighborhood, [a, b]-factor, Hamiltonian [a, b]-factor.

1

15704

Notes on Fractional k-Covered Graphs

A graph G is fractional k-covered if for each edge e of
G, there exists a fractional k-factor h, such that h(e) = 1. If k = 2,
then a fractional k-covered graph is called a fractional 2-covered
graph. The binding number bind(G) is defined as follows,
bind(G) = min{|NG(X)|
|X|
: ├ÿ = X Ôèå V (G),NG(X) = V (G)}.
In this paper, it is proved that G is fractional 2-covered if δ(G) ≥ 4
and bind(G) > 5
3 .

graph, binding number, fractional k-factor, fractional k-covered graph.